694 research outputs found
Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background
The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L.) donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread applicability
Alarmins MRP8 and MRP14 Induce Stress Tolerance in Phagocytes under Sterile Inflammatory Conditions
Hyporesponsiveness by phagocytes is a well-known phenomenon in sepsis that is frequently induced by low-dose endotoxin stimulation of Toll-like receptor 4 (TLR4) but can also be found under sterile inflammatory conditions. We now demonstrate that the endogenous alarmins MRP8 and MRP14 induce phagocyte hyporesponsiveness via chromatin modifications in a TLR4-dependent manner that results in enhanced survival to septic shock in mice. During sterile inflammation, polytrauma and burn trauma patients initially present with high serum concentrations of myeloid-related proteins (MRPs). Human neonatal phagocytes are primed for hyporesponsiveness by increased peripartal MRP concentrations, which was confirmed in murine neonatal endotoxinemia in wild-type and MRP14(-/-) mice. Our data therefore indicate that alarmin-triggered phagocyte tolerance represents a regulatory mechanism for the susceptibility of neonates during systemic infections and sterile inflammation
Mahanine exerts in vitro and in vivo antileishmanial activity by modulation of redox homeostasis
Earlier we have established a carbazole alkaloid (mahanine) isolated from an Indian edible medicinal
plant as an anticancer agent with minimal effect on normal cells. Here we report for the first time that
mahanine-treated drug resistant and sensitive virulent Leishmania donovani promastigotes underwent apoptosis through phosphatidylserine externalization, DNA fragmentation and cell cycle arrest. An early induction of reactive oxygen species (ROS) suggests that the mahanine-induced apoptosis was mediated by oxidative stress. Additionally, mahanine-treated Leishmania-infected macrophages exhibited anti-amastigote activity by nitric oxide (NO)/ROS generation along with suppression of uncoupling protein 2 and Th1-biased cytokines response through modulating STAT pathway. Moreover, we have demonstrated the interaction of a few antioxidant enzymes present in parasite with mahanine
through molecular modeling. Reduced genetic and protein level expression of one such enzyme namely ascorbate peroxidase was also observed in mahanine-treated promastigotes. Furthermore, oral administration of mahanine in acute murine model exhibited almost complete reduction of parasite burden, upregulation of NO/iNOS/ROS/IL-12 and T cell proliferation. Taken together, we have established a new function of mahanine as a potent antileishmanial molecule, capable of inducing ROS and exploit antioxidant enzymes in parasite along with modulation of host’s immune response which
could be developed as an inexpensive and nontoxic therapeutics either alone or in combination
Benefits and risks of the hormetic effects of dietary isothiocyanates on cancer prevention
The isothiocyanate (ITC) sulforaphane (SFN) was shown at low levels (1-5 µM) to promote cell proliferation to 120-143% of the controls in a number of human cell lines, whilst at high levels (10-40 µM) it inhibited such cell proliferation. Similar dose responses were observed for cell migration, i.e. SFN at 2.5 µM increased cell migration in bladder cancer T24 cells to 128% whilst high levels inhibited cell migration. This hormetic action was also found in an angiogenesis assay where SFN at 2.5 µM promoted endothelial tube formation (118% of the control), whereas at 10-20 µM it caused significant inhibition. The precise mechanism by which SFN influences promotion of cell growth and migration is not known, but probably involves activation of autophagy since an autophagy inhibitor, 3-methyladenine, abolished the effect of SFN on cell migration. Moreover, low doses of SFN offered a protective effect against free-radical mediated cell death, an effect that was enhanced by co-treatment with selenium. These results suggest that SFN may either prevent or promote tumour cell growth depending on the dose and the nature of the target cells. In normal cells, the promotion of cell growth may be of benefit, but in transformed or cancer cells it may be an undesirable risk factor. In summary, ITCs have a biphasic effect on cell growth and migration. The benefits and risks of ITCs are not only determined by the doses, but are affected by interactions with Se and the measured endpoint
Gamma (γ) tocopherol upregulates peroxisome proliferator activated receptor (PPAR) gamma (γ) expression in SW 480 human colon cancer cell lines
BACKGROUND: Tocopherols are lipid soluble antioxidants that exist as eight structurally different isoforms. The intake of γ-tocopherol is higher than α-tocopherol in the average US diet. The clinical results of the effects of vitamin E as a cancer preventive agent have been inconsistent. All published clinical trials with vitamin E have used α-tocopherol. Recent epidemiological, experimental and molecular studies suggest that γ-tocopherol may be a more potent chemopreventive form of vitamin E compared to the more-studied α-tocopherol. γ-Tocopherol exhibits differences in its ability to detoxify nitrogen dioxide, growth inhibitory effects on selected cancer cell lines, inhibition of neoplastic transformation in embryonic fibroblasts, and inhibition of cyclooxygenase-2 (COX-2) activity in macrophages and epithelial cells. Peroxisome proliferator activator receptor γ (PPARγ) is a promising molecular target for colon cancer prevention. Upregulation of PPARγ activity is anticarcinogenic through its effects on downstream genes that affect cellular proliferation and apoptosis. The thiazolidine class of drugs are powerful PPARγ ligands. Vitamin E has structural similarity to the thiazolidine, troglitazone. In this investigation, we tested the effects of both α and γ tocopherol on the expression of PPARγ mRNA and protein in SW 480 colon cancer cell lines. We also measured the intracellular concentrations of vitamin E in SW 480 colon cancer cell lines. RESULTS: We have discovered that the α and γ isoforms of vitamin E upregulate PPARγ mRNA and protein expression in the SW480 colon cancer cell lines. γ-Tocopherol is a better modulator of PPARγ expression than α-tocopherol at the concentrations tested. Intracellular concentrations increased as the vitamin E concentration added to the media was increased. Further, γ-tocopherol-treated cells have higher intracellular tocopherol concentrations than those treated with the same concentrations of α-tocopherol. CONCLUSION: Our data suggest that both α and γ tocopherol can upregulate the expression of PPARγ which is considered an important molecular target for colon cancer chemoprevention. We show that the expression of PPARγ mRNA and protein are increased and these effects are more pronounced with γ-tocopherol. γ-Tocopherol's ability to upregulate PPARγ expression and achieve higher intracellular concentrations in the colonic tissue may be relevant to colon cancer prevention. We also show that the intracellular concentrations of γ-tocopherol are several fold higher than α-tocopherol. Further work on other colon cancer cell lines are required to quantitate differences in the ability of these forms of vitamin E to induce apoptosis, suppress cell proliferation and act as PPAR ligands as well as determine their effects in conjunction with other chemopreventive agents. Upregulation of PPARγ by the tocopherols and in particular by γ-tocopherol may have relevance not only to cancer prevention but also to the management of inflammatory and cardiovascular disorders
Downregulation of Integrin β4 Decreases the Ability of Airway Epithelial Cells to Present Antigens
Airway epithelial cells have been demonstrated to be accessory antigen presentation cells (APC) capable of activating T cells and may play an important role in the development of allergic airway inflammation of asthma. In asthmatic airways, loss of expression of the adhesion molecule integrin β4 (ITGB4) and an increase in Th2 inflammation bias has been observed in our previous study. Given that ITGB4 is engaged in multiple signaling pathways, we studied whether disruption of ITGB4-mediated cell adhesion may contribute to the adaptive immune response of epithelial cells, including their ability to present antigens, induce the activate and differentiate of T cells. We silenced ITGB4 expression in bronchial epithelial cells with an effective siRNA vector and studied the effects of ITGB4 silencing on the antigen presentation ability of airway epithelial cells. T cell proliferation and cytokine production was investigated after co-culturing with ITGB4-silenced epithelial cells. Surface expression of B7 homologs and the major histocompatibility complex (MHC) class II was also detected after ITGB4 was silenced. Our results demonstrated that silencing of ITGB4 resulted in impaired antigen presentation processes and suppressed T cell proliferation. Meanwhile, decrease in Th1 cytokine production and increase in Th17 cytokine production was induced after co-culturing with ITGB4-silenced epithelial cells. Moreover, HLA-DR was decreased and the B7 homologs expression was different after ITGB4 silencing. Overall, this study suggested that downregulation of ITGB4 expression in airway epithelial cells could impair the antigen presentation ability of these cells, which further regulate airway inflammation reaction in allergic asthma
Enhancing the immunogenicity of tumour lysate-loaded dendritic cell vaccines by conjugation to virus-like particles
BACKGROUND: Tumour cell lysates are an excellent source of many defined and undefined tumour antigens and have been used clinically in immunotherapeutic regimes but with limited success. METHODS: We conjugated Mel888 melanoma lysates to rabbit haemorrhagic disease virus virus-like particles (VLP), which can act as vehicles to deliver multiple tumour epitopes to dendritic cells (DC) to effectively activate antitumour responses. RESULTS: Virus-like particles did not stimulate the phenotypic maturation of DC although, the conjugation of lysates to VLP (VLP-lysate) did overcome lysate-induced suppression of DC activation. Lysate-conjugated VLP enhanced delivery of antigenic proteins to DC, while the co-delivery of VLP-lysates with OK432 resulted in cross-priming of naïve T cells, with expansion of a MART1(+) population of CD8(+) T cells and generation of a specific cytotoxic response against Mel888 tumour cell targets. The responses generated with VLP-lysate and OK432 were superior to those stimulated by unconjugated lysate with OK432. CONCLUSION: Collectively, these results show that the combination of VLP-lysate with OK432 delivered to DC overcomes the suppressive effects of lysates, and enables priming of naïve T cells with superior ability to specifically kill their target tumour cells
Pathogenic p62/SQSTM1 mutations impair energy metabolism through limitation of mitochondrial substrates
Abnormal mitochondrial function has been found in patients with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Mutations in the p62 gene (also known as SQSTM1) which encodes the p62 protein have been reported in both disorders supporting the idea of an ALS/FTD continuum. In this work the role of p62 in energy metabolism was studied in fibroblasts from FTD patients carrying two independent pathogenic mutations in the p62 gene, and in a p62-knock-down (p62 KD) human dopaminergic neuroblastoma cell line (SH-SY5Y). We found that p62 deficiency is associated with inhibited complex I mitochondrial respiration due to lack of NADH for the electron transport chain. This deficiency was also associated with increased levels of NADPH reflecting a higher activation of pentose phosphate pathway as this is accompanied with higher cytosolic reduced glutathione (GSH) levels. Complex I inhibition resulted in lower mitochondrial membrane potential and higher cytosolic ROS production. Pharmacological activation of transcription factor Nrf2 increased mitochondrial NADH levels and restored mitochondrial membrane potential in p62-deficient cells. Our results suggest that the phenotype is caused by a loss-of-function effect, because similar alterations were found both in the mutant fibroblasts and the p62 KD model. These findings highlight the implication of energy metabolism in pathophysiological events associated with p62 deficiency
- …