8 research outputs found

    Bayesian parameter estimation for targeted anisotropic gravitational-wave background

    Full text link
    Extended sources of the stochastic gravitational backgrounds have been conventionally searched on the spherical harmonics bases. The analysis during the previous observing runs by the ground-based gravitational-wave detectors, such as LIGO and Virgo, have yielded the constraints on the angular power spectrum Cℓ, yet it lacks the capability of estimating other parameters such as a spectral index. In this paper, we introduce an alternative Bayesian formalism to search for such stochastic signals with a particular distribution of anisotropies on the sky. This approach provides a Bayesian posterior of model parameters and also enables selection tests among different signal models. While the conventional analysis fixes the highest angular scale a priori, here we show a more systematic and quantitative way to determine the cutoff scale based on a Bayes factor, which depends on the amplitude and the angular scale of observed signals. Also, we analyze the third observing runs of LIGO and Virgo for the population of millisecond pulsars and obtain the 95% constraints of the signal amplitude, Ï”<2.7×10-8PGC2018-094773-B-C32, CEX2020-001007-

    Angular Resolution of the Search for Anisotropic Stochastic Gravitational-Wave Background with Terrestrial Gravitational-Wave Detectors

    Get PDF
    We consider an anisotropic search for the stochastic gravitational-wave (GW) background by decomposing the gravitational-wave sky into its spherical harmonics components. Previous analyses have used the diffraction limit to define the highest-order spherical harmonics components used in this search. We investigate whether the angular resolution of this search is indeed diffraction-limited by testing our ability to detect and localize simulated GW signals. We show that while using low-order spherical harmonics modes is optimal for initially detecting GW sources, the detected sources can be better localized with higher-order spherical harmonics than expected based on the diffraction limit argument. Additionally, we discuss how the ability to recover simulated GW sources is affected by the number of detectors in the network, the frequency range over which the search is performed, and the method by which the covariance matrix of the GW skymap is regularized. While we primarily consider point-source signals in this study, we briefly apply our methodology to spatially-extended sources and discuss potential future modifications of our analysis for such signals

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M&gt;70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0&lt;e≀0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo

    Get PDF
    Advanced LIGO and Advanced Virgo are monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded by these instruments during their first and second observing runs. The main data products are gravitational-wave strain time series sampled at 16384 Hz. The datasets that include this strain measurement can be freely accessed through the Gravitational Wave Open Science Center at http://gw-openscience.org, together with data-quality information essential for the analysis of LIGO and Virgo data, documentation, tutorials, and supporting software

    Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

    No full text
    International audienceIntermediate-mass black holes (IMBHs) span the approximate mass range 100−105 M⊙, between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∌150 M⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M⊙ and effective aligned spin 0.8 at 0.056 Gpc−3 yr−1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc−3 yr−1.Key words: gravitational waves / stars: black holes / black hole physicsCorresponding author: W. Del Pozzo, e-mail: [email protected]† Deceased, August 2020
    corecore