89 research outputs found
Validation of "(fr)AGILE": A quick tool to identify multidimensional frailty in the elderly
Background Several tools have been proposed and validated to operationally define frailty. Recently, the Italian Frailty index (IFi), an Italian modified version of Frailty index, has been validated but its use in clinical practice is limited by long time of administration. Therefore, the aim of this study was to create and validate a quick version of the IFi (AGILE). Methods Validation study was performed by administering IFi and AGILE, after a Comprehensive Geriatric Assessment (CGA) in 401 subjects aged 65 or over (77 +/- 7 years). AGILE was a 10-items tool created starting from the more predictive items of the four domains of frailty investigated by IFi (mental, physical, socioeconomic and nutritional). AGILE scores were stratified in light, moderate and severe frailty. At 24 months of follow-up, death, disability (taking into account an increase in ADL lost >= 1 from the baseline) and hospitalization were considered. Area under curve (AUC) was evaluated for both IFi and AGILE. Results Administration time was 9.5 +/- 3.8 min for IFi administered after a CGA, and 2.4 +/- 1.2 min for AGILE, regardless of CGA (p < 0.001). With increasing degree of frailty, prevalence of mortality increased progressively from 6.5 to 41.8% and from 9.0 to 33.3%, disability from 16.1 to 64.2% and from 22.1 to 59.8% and hospitalization from 17.2 to 58.7% and from 27.0 to 52.2% with AGILE and IFi, respectively (p = NS). Relative Risk for each unit of increase in AGILE was 56, 44 and 24% for mortality, disability and hospitalization, respectively and was lower for IFi (8, 7 and 4% for mortality, disability and hospitalization, respectively). The AUC was higher in AGILE vs. IFi for mortality (0.729 vs. 0.698), disability (0.715 vs. 0.682) and hospitalization (0.645 vs. 0.630). Conclusions Our study shows that AGILE is a rapid and effective tool for screening multidimensional frailty, able to predict mortality, disability and hospitalization, especially useful in care settings that require reliable assessment instruments with short administration time
Recommended from our members
A mathematical model of melt lake development on an ice shelf
The accumulation of surface meltwater on ice shelves can lead to the formation of melt lakes. Melt lakes have been implicated in ice shelf collapse; Antarctica's Larsen B Ice Shelf was observed to have a large amount of surface melt lakes present preceding its collapse in 2002. Such collapse can affect ocean circulation and temperature, cause habitat loss and contribute to sea level rise through the acceleration of tributary glaciers. We present a mathematical model of a surface melt lake on an idealised ice shelf. The model incorporates a calculation of the ice shelf surface energy balance, heat transfer through the firn, the production and percolation of meltwater into the firn, the formation of ice lenses and the development and refreezing of surface melt lakes.
The model is applied to the Larsen C Ice Shelf, where melt lakes have been observed. This region has warmed several times the global average over the last century and the Larsen C firn layer could become saturated with meltwater by the end of the century.
When forced with weather station data, our model produces surface melting, meltwater accumulation, and melt lake development consistent with observations. We examine the sensitivity of lake formation to uncertain parameters, and provide evidence of the importance of processes such as lateral meltwater transport.
We conclude that melt lakes impact surface melt and firn density and warrant inclusion in dynamic-thermodynamic models of ice shelf evolution within climate models, of which our model could form the basis for the thermodynamic component
Recommended from our members
Sea-ice-free Arctic during the Last Interglacial supports fast future loss
The Last Interglacial (LIG), a warmer period 130-116 ka before present, is a potential analog for future climate change. Stronger LIG summertime insolation at high northern latitudes drove Arctic land summer temperatures 4-5 °C higher than the preindustrial era. Climate model simulations have previously failed to capture these elevated temperatures, possibly because they were unable to correctly capture LIG sea-ice changes. Here, we show the latest version of the fully-coupled UK Hadley Center climate model (HadGEM3) simulates a more accurate Arctic LIG climate, including elevated temperatures. Improved model physics, including a sophisticated sea-ice melt-pond scheme, result in a complete simulated loss of Arctic sea ice in summer during the LIG, which has yet to be simulated in past generations of models. This ice-free Arctic yields a compelling solution to the longstanding puzzle of what drove LIG Arctic warmth and supports a fast retreat of future Arctic summer sea ice
Epidemiology of intra-abdominal infection and sepsis in critically ill patients: “AbSeS”, a multinational observational cohort study and ESICM Trials Group Project
Purpose: To describe the epidemiology of intra-abdominal infection in an international cohort of ICU patients according to a new system that classifies cases according to setting of infection acquisition (community-acquired, early onset hospital-acquired, and late-onset hospital-acquired), anatomical disruption (absent or present with localized or diffuse peritonitis), and severity of disease expression (infection, sepsis, and septic shock). Methods: We performed a multicenter (n = 309), observational, epidemiological study including adult ICU patients diagnosed with intra-abdominal infection. Risk factors for mortality were assessed by logistic regression analysis. Results: The cohort included 2621 patients. Setting of infection acquisition was community-acquired in 31.6%, early onset hospital-acquired in 25%, and late-onset hospital-acquired in 43.4% of patients. Overall prevalence of antimicrobial resistance was 26.3% and difficult-to-treat resistant Gram-negative bacteria 4.3%, with great variation according to geographic region. No difference in prevalence of antimicrobial resistance was observed according to setting of infection acquisition. Overall mortality was 29.1%. Independent risk factors for mortality included late-onset hospital-acquired infection, diffuse peritonitis, sepsis, septic shock, older age, malnutrition, liver failure, congestive heart failure, antimicrobial resistance (either methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, extended-spectrum beta-lactamase-producing Gram-negative bacteria, or carbapenem-resistant Gram-negative bacteria) and source control failure evidenced by either the need for surgical revision or persistent inflammation. Conclusion: This multinational, heterogeneous cohort of ICU patients with intra-abdominal infection revealed that setting of infection acquisition, anatomical disruption, and severity of disease expression are disease-specific phenotypic characteristics associated with outcome, irrespective of the type of infection. Antimicrobial resistance is equally common in community-acquired as in hospital-acquired infection
Monitoring of microbial hydrocarbon remediation in the soil
Bioremediation of hydrocarbon pollutants is advantageous owing to the cost-effectiveness of the technology and the ubiquity of hydrocarbon-degrading microorganisms in the soil. Soil microbial diversity is affected by hydrocarbon perturbation, thus selective enrichment of hydrocarbon utilizers occurs. Hydrocarbons interact with the soil matrix and soil microorganisms determining the fate of the contaminants relative to their chemical nature and microbial degradative capabilities, respectively. Provided the polluted soil has requisite values for environmental factors that influence microbial activities and there are no inhibitors of microbial metabolism, there is a good chance that there will be a viable and active population of hydrocarbon-utilizing microorganisms in the soil. Microbial methods for monitoring bioremediation of hydrocarbons include chemical, biochemical and microbiological molecular indices that measure rates of microbial activities to show that in the end the target goal of pollutant reduction to a safe and permissible level has been achieved. Enumeration and characterization of hydrocarbon degraders, use of micro titer plate-based most probable number technique, community level physiological profiling, phospholipid fatty acid analysis, 16S rRNA- and other nucleic acid-based molecular fingerprinting techniques, metagenomics, microarray analysis, respirometry and gas chromatography are some of the methods employed in bio-monitoring of hydrocarbon remediation as presented in this review
Ten golden rules for optimal antibiotic use in hospital settings: the WARNING call to action
Antibiotics are recognized widely for their benefits when used appropriately. However, they are often used inappropriately despite the importance of responsible use within good clinical practice. Effective antibiotic treatment is an essential component of universal healthcare, and it is a global responsibility to ensure appropriate use. Currently, pharmaceutical companies have little incentive to develop new antibiotics due to scientific, regulatory, and financial barriers, further emphasizing the importance of appropriate antibiotic use. To address this issue, the Global Alliance for Infections in Surgery established an international multidisciplinary task force of 295 experts from 115 countries with different backgrounds. The task force developed a position statement called WARNING (Worldwide Antimicrobial Resistance National/International Network Group) aimed at raising awareness of antimicrobial resistance and improving antibiotic prescribing practices worldwide. The statement outlined is 10 axioms, or “golden rules,” for the appropriate use of antibiotics that all healthcare workers should consistently adhere in clinical practice
- …