33 research outputs found

    Wildfire may increase habitat quality for spring Chinook salmon in the Wenatchee River subbasin, WA, USA

    Get PDF
    Pacific Northwest salmonids are adapted to natural disturbance regimes that create dynamic habitat patterns over space and through time. However, human land use, particularly long-term fire suppression, has altered the intensity and frequency of wildfire in forested upland and riparian areas. To examine the potential impacts of wildfire on aquatic systems, we developed stream-reach-scale models of freshwater habitat for three life stages (adult, egg/fry, and juvenile) of spring Chinook salmon (Oncorhynchus tshawytscha) in the Wenatchee River subbasin, Washington. We used variables representing pre- and post-fire habitat conditions and employed novel techniques to capture changes in in-stream fine sediment, wood, and water temperature. Watershed-scale comparisons of high-quality habitat for each life stage of spring Chinook salmon habitat suggested that there are smaller quantities of high-quality juvenile overwinter habitat as compared to habitat for other life stages. We found that wildfire has the potential to increase quality of adult and overwintering juvenile habitat through increased delivery of wood, while decreasing the quality of egg and fry habitat due to the introduction of fine sediments. Model results showed the largest effect of fire on habitat quality associated with the juvenile life stage, resulting in increases in high-quality habitat in all watersheds. Due to the limited availability of pre-fire high-quality juvenile habitat, and increased habitat quality for this life stage post-fire, occurrence of characteristic wildfires would likely create a positive effect on spring Chinook salmon habitat in the Wenatchee River subbasin. We also compared pre- and post-fire model results of freshwater habitat for each life stage, and for the geometric mean of habitat quality across all life stages, using current compared to the historic distribution of spring Chinook salmon. We found that spring Chinook salmon are currently distributed in stream channels in which in-stream habitat for most life stages has a consistently positive response to fire. This compares to the historic distribution of spring Chinook, in which in-stream habitat exhibited a variable response to fire, including decreases in habitat quality overall or for specific life stages. This suggests that as the distribution of spring Chinook has decreased, they now occupy those areas with the most positive potential response to fire. Our work shows the potentially positive link between wildfire and aquatic habitat that supports forest managers in setting broader goals for fire management, perhaps leading to less fire suppression in some situations

    Sectoral Impacts of Invasive Species in the United States and Approaches to Management

    Get PDF
    Invasive species have a major effect on many sectors of the U.S. economy and on the well-being of its citizens. Their presence impacts animal and human health, military readiness, urban vegetation and infrastructure, water, energy and transportations systems, and indigenous peoples in the United States (Table 9.1). They alter bio-physical systems and cultural practices and require significant public and private expenditure for control. This chapter provides examples of the impacts to human systems and explains mechanisms of invasive species’ establishment and spread within sectors of the U.S. economy. The chapter is not intended to be comprehensive but rather to provide insight into the range and severity of impacts. Examples provide context for ongoing Federal programs and initiatives and support State and private efforts to prevent the introduction and spread of invasive species and eradicate and control established invasive species

    A possible role for river restoration enhancing biodiversity through interaction with wildfire

    Get PDF
    BackgroundHistorically, wildfire regimes produced important landscape-scale disturbances in many regions globally. The “pyrodiversity begets biodiversity” hypothesis suggests that wildfires that generate temporally and spatially heterogeneous mosaics of wildfire severity and post-burn recovery enhance biodiversity at landscape scales. However, river management has often led to channel incision that disconnects rivers from their floodplains, desiccating floodplain habitats and depleting groundwater. In conjunction with predicted increases in frequency, intensity and extent of wildfires under climate change, this increases the likelihood of deep, uniform burns that reduce biodiversity.Predicted synergy of river restoration and biodiversity increaseRecent focus on floodplain re-wetting and restoration of successional floodplain habitat mosaics, developed for river management and flood prevention, could reduce wildfire intensity in restored floodplains and make the burns less uniform, increasing climate-change resilience; an important synergy. According to theory, this would also enhance biodiversity. However, this possibility is yet to be tested empirically. We suggest potential research avenues.Illustration and future directionsWe illustrate the interaction between wildfire and river restoration using a restoration project in Oregon, USA. A project to reconnect the South Fork McKenzie River and its floodplain suffered a major burn (“Holiday Farm” wildfire, 2020), offering a rare opportunity to study the interaction between this type of river restoration and wildfire; specifically, the predicted increases in pyrodiversity and biodiversity. Given the importance of river and wetland ecosystems for biodiversity globally, a research priority should be to increase our understanding of potential mechanisms for a “triple win” of flood reduction, wildfire alleviation and biodiversity promotion

    Habitat overlap among native and introduced cold-water fishes in the Himalayas

    No full text
    Abstract Fish invasions threaten native freshwater ecosystems worldwide, yet methods to map biodiversity in data-deficient regions are scarce. Rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta fario) have been introduced to the Himalayan ecoregion where they are sympatric with vulnerable native snow trout Schizothorax plagiostomus and Schizothorax richardsonii. We aim to evaluate potential habitat overlap among snow trout and non-native trout in the Indus and Ganges River basins, Himalayan ecoregion. We transferred maximum entropy (MaxEnt) models developed with spatially continuous freshwater-specific environmental variables to map the distribution of potentially suitable habitats for rainbow and brown trout in the Himalayas. We adopted a similar procedure to map suitable habitats for snow trout species. There were substantial habitat overlaps (up to 96%) among snow trout and non-native trout. Yet, the physiography of receiving basins could play a role minimizing the impacts of each non-native trout on native snow trout. We generate high-resolution classified stream suitability maps as decision support tools to help managers in habitat allocation and policy formation to balance recreational fisheries with conservation of snow trout. Our workflow can be transferred to other basins and species for mapping freshwater biodiversity patterns in species-rich yet data-poor regions of the world

    Patterns of riparian policy standards in riverscapes of the Oregon Coast Range

    No full text
    A riverscape perspective considers the ecological and social landscape of the river and its valley. In this context, we examined the spatial arrangement of protective policies for river networks. Riparian land-management standards are policy efforts that explicitly restrict certain management actions, e.g., timber harvest or land clearing, in stream-adjacent lands in order to protect water quality and aquatic habitat. In western Oregon, USA, management standards for riparian lands vary across federal, state, and private landownerships and land uses, projecting a patchwork of protective efforts across the landscape. The resulting variability in protection can complicate coordinated recovery efforts for threatened and endangered aquatic organisms, including migratory coho salmon (Oncorhynchus kisutch), that rely on stream habitats throughout the river network. Using a geographic information system, we quantified the spatial distribution of riparian management standards at multiple spatial extents: across the entire Oregon Coast Range, within the region's 84 HUC-10 watersheds, and in stream segments with high intrinsic potential to support coho salmon habitat. We found that the proportion of streams falling under protective efforts varied across watersheds in the region. In particular, watersheds containing streams of high intrinsic potential to support coho salmon habitat were associated with gaps in protective standards. By comparing the policy landscape to the biophysical landscape, our approach provides a novel framework for examining the spatial overlay of social and ecological concerns, and has direct relevance to assessments of population-scale restoration and recovery efforts
    corecore