17,269 research outputs found

    Examining social media live stream’s influence on the consumer decision-making: a thematic analysis

    Get PDF
    oai:repository.uel.ac.uk:8x4q4Social media live streaming, in the form of live video and user stories, is widely used by influencers, organisations and individuals to connect with their audiences. Its popularity is well-established in a range of theoretical and managerial contexts. However, there is a lack of scholarship on the role of this phenomenon on consumer decision-making. Filling this gap in the research is essential due to the importance of consumer decision-making in marketing and brand strategy development in organisations. Therefore, the purpose of this paper is to explore and outline the nature of the influence of live stream on the consumer decision-making. The study was part of a 12-month Netnography consisting of participant observation and social media monitoring of brand pages and branded hashtags on social media platforms, Facebook, YouTube, Twitter and Instagram. A thematic analysis revealed five main themes and a conceptual model is proposed which outlines the social media live stream’s influence on consumer decision-making at each stage

    Field-guided proton acceleration at reconnecting X-points in flares

    Get PDF
    An explicitly energy-conserving full orbit code CUEBIT, developed originally to describe energetic particle effects in laboratory fusion experiments, has been applied to the problem of proton acceleration in solar flares. The model fields are obtained from solutions of the linearised MHD equations for reconnecting modes at an X-type neutral point, with the additional ingredient of a longitudinal magnetic field component. To accelerate protons to the highest observed energies on flare timescales, it is necessary to invoke anomalous resistivity in the MHD solution. It is shown that the addition of a longitudinal field component greatly increases the efficiency of ion acceleration, essentially because it greatly reduces the magnitude of drift motions away from the vicinity of the X-point, where the accelerating component of the electric field is largest. Using plasma parameters consistent with flare observations, we obtain proton distributions extending up to gamma-ray-emitting energies (>1MeV). In some cases the energy distributions exhibit a bump-on-tail in the MeV range. In general, the shape of the distribution is sensitive to the model parameters.Comment: 14 pages, 4 figures, accepted for publication in Solar Physic

    Electron Inertial Effects on Rapid Energy Redistribution at Magnetic X-points

    Full text link
    The evolution of non-potential perturbations to a current-free magnetic X-point configuration is studied, taking into account electron inertial effects as well as resistivity. Electron inertia is shown to have a negligible effect on the evolution of the system whenever the collisionless skin depth is less than the resistive scale length. Non-potential magnetic field energy in this resistive MHD limit initially reaches equipartition with flow energy, in accordance with ideal MHD, and is then dissipated extremely rapidly, on an Alfvenic timescale that is essentially independent of Lundquist number. In agreement with resistive MHD results obtained by previous authors, the magnetic field energy and kinetic energy are then observed to decay on a longer timescale and exhibit oscillatory behavior, reflecting the existence of discrete normal modes with finite real frequency. When the collisionless skin depth exceeds the resistive scale length, the system again evolves initially according to ideal MHD. At the end of this ideal phase, the field energy decays typically on an Alfvenic timescale, while the kinetic energy (which is equally partitioned between ions and electrons in this case) is dissipated on the electron collision timescale. The oscillatory decay in the energy observed in the resistive case is absent, but short wavelength structures appear in the field and velocity profiles, suggesting the possibility of particle acceleration in oppositely-directed current channels. The model provides a possible framework for interpreting observations of energy release and particle acceleration on timescales down to less than a second in the impulsive phase of solar flares.Comment: 30 pages, 8 figure

    A theoretical investigation of the effect of proliferation & adhesion on monoclonal conversion in the colonic crypt

    Get PDF
    The surface epithelium lining the intestinal tract renews itself rapidly by a coordinated programme of cell proliferation, migration and differentiation events that is initiated in the crypts of LieberkĂĽhn. It is generally believed that colorectal cancer arises due to mutations that disrupt the normal cellular dynamics of the crypts. Using a spatially structured cell-based model of a colonic crypt, we investigate the likelihood that the progeny of a mutated cell will dominate, or be sloughed out of, a crypt. Our approach is to perform multiple simulations, varying the spatial location of the initial mutation, and the proliferative and adhesive properties of the mutant cells, to obtain statistical distributions for the probability of their domination. Our simulations lead us to make a number of predictions. The process of monoclonal conversion always occurs, and does not require that the cell which initially gave rise to the population remains in the crypt. Mutations occurring more than one to two cells from the base of the crypt are unlikely to become the dominant clone. The probability of a mutant clone persisting in the crypt is sensitive to dysregulation of adhesion. By comparing simulation results with those from a simple one-dimensional stochastic model of population dynamics at the base of the crypt, we infer that this sensitivity is due to direct competition between wild-type and mutant cells at the base of the crypt. We also predict that increases in the extent of the spatial domain in which the mutant cells proliferate can give rise to counter-intuitive, non-linear changes to the probability of their fixation, due to effects that cannot be captured in simpler models

    Thermo-acoustic wave propagation and reflection near the liquid-gas critical point

    Full text link
    We study the thermo-acoustic wave propagation and reflection near the liquid-gas critical point. Specifically, we perform a numerical investigation of the acoustic responses in a near-critical fluid to thermal perturbations based on the same setup of a recent ultrasensitive interferometry measurement in CO2 [Y. Miura et al. Phys. Rev. E 74, 010101(R) (2006)]. The numerical results agree well with the experimental data. New features regarding the reflection pattern of thermo-acoustic waves near the critical point under pulse perturbations are revealed by the proper inclusion of the critically diverging bulk viscosity.Comment: 14 pages, 4 figures, Accepted by PRE (Rapid Communication

    Implementing vertex dynamics models of cell populations in biology within a consistent computational framework

    Get PDF
    The dynamic behaviour of epithelial cell sheets plays a central role during development, growth, disease and wound healing. These processes occur as a result of cell adhesion, migration, division, differentiation and death, and involve multiple processes acting at the cellular and molecular level. Computational models offer a useful means by which to investigate and test hypotheses about these processes, and have played a key role in the study of cell–cell interactions. However, the necessarily complex nature of such models means that it is difficult to make accurate comparison between different models, since it is often impossible to distinguish between differences in behaviour that are due to the underlying model assumptions, and those due to differences in the in silico implementation of the model. In this work, an approach is described for the implementation of vertex dynamics models, a discrete approach that represents each cell by a polygon (or polyhedron) whose vertices may move in response to forces. The implementation is undertaken in a consistent manner within a single open source computational framework, Chaste, which comprises fully tested, industrial-grade software that has been developed using an agile approach. This framework allows one to easily change assumptions regarding force generation and cell rearrangement processes within these models. The versatility and generality of this framework is illustrated using a number of biological examples. In each case we provide full details of all technical aspects of our model implementations, and in some cases provide extensions to make the models more generally applicable

    A theoretical investigation of the effect of proliferation and\ud adhesion on monoclonal conversion in the colonic crypt

    Get PDF
    Colorectal cancers are initiated by the accumulation of mutations in the colonic epithelium. Using a spatially structured cell-based model of a colonic crypt, we investigate the likelihood that the progeny of a mutated cell will dominate, or be sloughed out of, a crypt. Our approach is to perform multiple simulations, varying the spatial location of the initial mutation, and its proliferative and adhesive properties, to obtain statistical distributions for the probability of domination. Our simulations lead us to make a number of predictions. The process of monoclonal conversion always occurs, and does not require that the cell which initially gave rise to the population remains in the crypt. Mutations occurring more than one to two cells from the base of the crypt are unlikely to become the dominant clone. The probability of a mutant clone persisting in the crypt is sensitive to dysregulation of adhesion, and comparison with a one-dimensional model suggests that this is caused by competition directly at the base of the crypt.\ud We also predict that increases in the extent of the spatial domain in which the mutant cells proliferate cause counter-intuitive non-linear changes to the probability of its fixation, due to effects that cannot be captured in simpler models

    The limits of filopodium stability

    Full text link
    Filopodia are long, finger-like membrane tubes supported by cytoskeletal filaments. Their shape is determined by the stiffness of the actin filament bundles found inside them and by the interplay between the surface tension and bending rigidity of the membrane. Although one might expect the Euler buckling instability to limit the length of filopodia, we show through simple energetic considerations that this is in general not the case. By further analyzing the statics of filaments inside membrane tubes, and through computer simulations that capture membrane and filament fluctuations, we show under which conditions filopodia of arbitrary lengths are stable. We discuss several in vitro experiments where this kind of stability has already been observed. Furthermore, we predict that the filaments in long, stable filopodia adopt a helical shape
    • …
    corecore