16,443 research outputs found
A webometric analysis of Australian Universities using staff and size dependent web impact factors (WIF)
This study describes how search engines (SE) can be employed for automated, efficient data gathering for Webometric studies using predictable URLs. It then compares the usage of staffrelated Web Impact Factors (WIFs) to sizerelated impact factors for a ranking of Australian universities, showing that rankings based on staffrelated WIFs correlate much better with an established ranking from the Melbourne Institute than commonly used sizedependent WIFs. In fact sizedependent WIFs do not correlate with the Melbourne ranking at all. It also compares WIF data for Australian Universities provided by Smith (1999) for a longitudinal comparison of the WIF of Australian Universities over the last decade. It shows that sizedependent WIF values declined for most Australian universities over the last ten years, while staffdependent WIFs rose
A genome-wide investigation of the worldwide invader Sargassum muticum shows high success albeit (almost) no genetic diversity
Twenty years of genetic studies of marine invaders have shown that successful invaders are often characterized by native and introduced populations displaying similar levels of genetic diversity. This pattern is presumably due to high propagule pressure and repeated introductions. The opposite pattern is reported in this study of the brown seaweed, Sargassum muticum, an emblematic species for circumglobal invasions. Albeit demonstrating polymorphism in the native range, microsatellites failed to detect any genetic variation over 1,269 individuals sampled from 46 locations over the Pacific-Atlantic introduction range. Single-nucleotide polymorphisms (SNPs) obtained from ddRAD sequencing revealed some genetic variation, but confirmed severe founder events in both the Pacific and Atlantic introduction ranges. Our study thus exemplifies the need for extreme caution in interpreting neutral genetic diversity as a proxy for invasive potential. Our results confirm a previously hypothesized transoceanic secondary introduction from NE Pacific to Europe. However, the SNP panel unexpectedly revealed two additional distinct genetic origins of introductions. Also, conversely to scenarios based on historical records, southern rather than northern NE Pacific populations could have seeded most of the European populations. Finally, the most recently introduced populations showed the lowest selfing rates, suggesting higher levels of recombination might be beneficial at the early stage of the introduction process (i.e., facilitating evolutionary novelties), whereas uniparental reproduction might be favored later in sustainably established populations (i.e., sustaining local adaptation).Agence Nationale de la Recherche - ANR-10-BTBR-04; European Regional Development Fund; Fundacao para a Ciencia e a Tecnologia - SFRH/BPD/107878/2015, UID/Multi/04326/2016, UID/Multi/04326/2019; Brittany Region;info:eu-repo/semantics/publishedVersio
The Charm Content of W+1 Jet Events as a Probe of the Strange Quark Distribution Function
We investigate the prospects for measuring the strange quark distribution
function of the proton in associated plus charm quark production at the
Tevatron. The quark signal produced by strange quark -- gluon fusion,
and , is approximately 5\%
of the inclusive jet cross section for jets with a transverse momentum
~GeV. We study the sensitivity of the plus charm quark cross
section to the parametrization of the strange quark distribution function, and
evaluate the various background processes. Strategies to identify charm quarks
in CDF and D\O \ are discussed. For a charm tagging efficiency of about 10\%
and an integrated luminosity of 30~pb or more, it should be possible to
constrain the strange quark distribution function from production at the
Tevatron.Comment: submitted to Phys. Lett. B, Latex, 12 pages + 4 postscript figures
encoded with uufile, FSU-HEP-930812, MAD/TH/93-6, MAD/PH/788. A postscript
file with text and embedded figures is available via anonymous ftp at
hepsg1.physics.fsu.edu, file is /pub/keller/fsu-hep-930812.p
Seasonal Variability of Saturn's Tropospheric Temperatures, Winds and Para-H from Cassini Far-IR Spectroscopy
Far-IR 16-1000 m spectra of Saturn's hydrogen-helium continuum measured
by Cassini's Composite Infrared Spectrometer (CIRS) are inverted to construct a
near-continuous record of upper tropospheric (70-700 mbar) temperatures and
para-H fraction as a function of latitude, pressure and time for a third of
a Saturnian year (2004-2014, from northern winter to northern spring). The
thermal field reveals evidence of reversing summertime asymmetries superimposed
onto the belt/zone structure. The temperature structure that is almost
symmetric about the equator by 2014, with seasonal lag times that increase with
depth and are qualitatively consistent with radiative climate models. Localised
heating of the tropospheric hazes (100-250 mbar) create a distinct perturbation
to the temperature profile that shifts in magnitude and location, declining in
the autumn hemisphere and growing in the spring. Changes in the para-H
() distribution are subtle, with a 0.02-0.03 rise over the spring
hemisphere (200-500 mbar) perturbed by (i) low- air advected by both the
springtime storm of 2010 and equatorial upwelling; and (ii) subsidence of
high- air at northern high latitudes, responsible for a developing
north-south asymmetry in . Conversely, the shifting asymmetry in the
para-H disequilibrium primarily reflects the changing temperature structure
(and the equilibrium distribution of ), rather than actual changes in
induced by chemical conversion or transport. CIRS results interpolated to
the same point in the seasonal cycle as re-analysed Voyager-1 observations show
qualitative consistency, with the exception of the tropical tropopause near the
equatorial zones and belts, where downward propagation of a cool temperature
anomaly associated with Saturn's stratospheric oscillation could potentially
perturb tropopause temperatures, para-H and winds. [ABRIDGED]Comment: Preprint accepted for publication in Icarus, 29 pages, 18 figure
Nestling diet, secondary sexual traits and fitness in the zebra finch
We examined the effect of nestling diet quality on a suite of physiological, morphological and life-history
traits in adult male zebra finches,Taeniopygia guttata. Compared with birds reared on a supplemented diet,
nestlings reared on a seed-only diet showed a reduced rate of growth and reduced cell-mediated immune function as measured by an in vivo response to aT lymphocyte-dependent mitogen. There were no differences between birds reared on the two diets in any of the following adult traits: body size, primary sexual traits (testes mass, numbers of stored sperm, sperm function, velocity and morphology), secondary sexual traits (beak colour and song rate), serological traits or immunological traits. The only differences we detected were a lower body mass and a greater proportion of individuals with plumage abnormalities among those reared on a seed-only diet (this latter effect was transient). The fact that male zebra finches reared on a seed-only diet were, as adults, virtually indistinguishable from those reared on a supple-
mented diet, despite having reduced growth and immune function as nestlings, demonstrates that they
subsequently compensated through the di¡erential allocation of resources. Our results indicate that differ-
ential allocation is costly in terms of fitness since birds reared on a seed-only diet experienced a significantly greater mortality rate than those reared on a supplemented diet. This in turn suggests the existence of a trade-of between the development of traits important for reproduction, such as primary and secondary sexual traits and longevity
The Origin of Nitrogen on Jupiter and Saturn from the N/N Ratio
The Texas Echelon cross Echelle Spectrograph (TEXES), mounted on NASA's
Infrared Telescope Facility (IRTF), was used to map mid-infrared ammonia
absorption features on both Jupiter and Saturn in February 2013. Ammonia is the
principle reservoir of nitrogen on the giant planets, and the ratio of
isotopologues (N/N) can reveal insights into the molecular
carrier (e.g., as N or NH) of nitrogen to the forming protoplanets, and
hence the source reservoirs from which these worlds accreted. We targeted two
spectral intervals (900 and 960 cm) that were relatively clear of
terrestrial atmospheric contamination and contained close features of
NH and NH, allowing us to derive the ratio from a single
spectrum without ambiguity due to radiometric calibration (the primary source
of uncertainty in this study). We present the first ground-based determination
of Jupiter's N/N ratio (in the range from to
), which is consistent with both previous space-based studies
and with the primordial value of the protosolar nebula. On Saturn, we present
the first upper limit on the N/N ratio of no larger than
for the 900-cm channel and a less stringent
requirement that the ratio be no larger than for the
960-cm channel ( confidence). Specifically, the data rule out
strong N-enrichments such as those observed in Titan's atmosphere and in
cometary nitrogen compounds. To the extent possible with ground-based
radiometric uncertainties, the saturnian and jovian N/N ratios
appear indistinguishable, implying that N-enriched ammonia ices could
not have been a substantial contributor to the bulk nitrogen inventory of
either planet, favouring the accretion of primordial N from the gas phase
or as low-temperature ices.Comment: 33 pages, 19 figures, manuscript accepted for publication in Icaru
A Gemini ground-based transmission spectrum of WASP-29b: a featureless spectrum from 515 to 720nm
We report Gemini-South GMOS observations of the exoplanet system WASP-29
during primary transit as a test case for differential spectrophotometry. We
use the multi-object spectrograph to observe the target star and a comparison
star simultaneously to produce multiple light curves at varying wavelengths.
The 'white' light curve and fifteen 'spectral' light curves are analysed to
refine the system parameters and produce a transmission spectrum from 515 to
720nm. All light curves exhibit time-correlated noise, which we model using a
variety of techniques. These include a simple noise rescaling, a Gaussian
process model, and a wavelet based method. These methods all produce consistent
results, although with different uncertainties. The precision of the
transmission spectrum is improved by subtracting a common signal from all the
spectral light curves, reaching a typical precision of ~1x10^-4 in transit
depth. The transmission spectrum is free of spectral features, and given the
non-detection of a pressure broadened Na feature, we can rule out the presence
of a Na rich atmosphere free of clouds or hazes, although we cannot rule out a
narrow Na core. This indicates that Na is not present in the atmosphere, and/or
that clouds/hazes play a significant role in the atmosphere and mask the broad
wings of the Na feature, although the former is a more likely explanation given
WASP-29b's equilibrium temperature of ~970 K, at which Na can form various
compounds. We also briefly discuss the use of Gaussian process and wavelet
methods to account for time correlated noise in transit light curves.Comment: 15 pages, 9 figures, 3 tables. Published in MNRAS. Figure 2 corrected
in version
The optical transmission spectrum of the hot Jupiter HAT-P-32b: clouds explain the absence of broad spectral features?
We report Gemini-North GMOS observations of the inflated hot Jupiter
HAT-P-32b during two primary transits. We simultaneously observed two
comparison stars and used differential spectro-photometry to produce
multi-wavelength light curves. 'White' light curves and 29 'spectral' light
curves were extracted for each transit and analysed to refine the system
parameters and produce transmission spectra from 520-930nm in ~14nm bins. The
light curves contain time-varying white noise as well as time-correlated noise,
and we used a Gaussian process model to fit this complex noise model. Common
mode corrections derived from the white light curve fits were applied to the
spectral light curves which significantly improved our precision, reaching
typical uncertainties in the transit depth of ~2x10^-4, corresponding to about
half a pressure scale height. The low resolution transmission spectra are
consistent with a featureless model, and we can confidently rule out broad
features larger than about one scale height. The absence of Na/K wings or
prominent TiO/VO features is most easily explained by grey absorption from
clouds in the upper atmosphere, masking the spectral features. However, we
cannot confidently rule out clear atmosphere models with low abundances (~10^-3
solar) of TiO, VO or even metal hydrides masking the Na and K wings. A smaller
scale height or ionisation could also contribute to muted spectral features,
but alone are unable to to account for the absence of features reported here.Comment: 17 pages, 11 figures, 2 tables, accepted for publication in MNRA
- …