13,862 research outputs found

    The Yale Lar TPC

    Get PDF
    In this paper we give a concise description of a liquid argon time projection chamber (LAr TPC) developed at Yale, and present results from its first calibration run with cosmic rays.Comment: 4 pages, 3 figures, NuInt07 Conference Proceeding

    Non-Markovian Dynamics and Entanglement of Two-level Atoms in a Common Field

    Full text link
    We derive the stochastic equations and consider the non-Markovian dynamics of a system of multiple two-level atoms in a common quantum field. We make only the dipole approximation for the atoms and assume weak atom-field interactions. From these assumptions we use a combination of non-secular open- and closed-system perturbation theory, and we abstain from any additional approximation schemes. These more accurate solutions are necessary to explore several regimes: in particular, near-resonance dynamics and low-temperature behavior. In detuned atomic systems, small variations in the system energy levels engender timescales which, in general, cannot be safely ignored, as would be the case in the rotating-wave approximation (RWA). More problematic are the second-order solutions, which, as has been recently pointed out, cannot be accurately calculated using any second-order perturbative master equation, whether RWA, Born-Markov, Redfield, etc.. This latter problem, which applies to all perturbative open-system master equations, has a profound effect upon calculation of entanglement at low temperatures. We find that even at zero temperature all initial states will undergo finite-time disentanglement (sometimes termed "sudden death"), in contrast to previous work. We also use our solution, without invoking RWA, to characterize the necessary conditions for Dickie subradiance at finite temperature. We find that the subradiant states fall into two categories at finite temperature: one that is temperature independent and one that acquires temperature dependence. With the RWA there is no temperature dependence in any case.Comment: 17 pages, 13 figures, v2 updated references, v3 clarified results and corrected renormalization, v4 further clarified results and new Fig. 8-1

    Synonymy and stratigraphic ranges of Belemnopsis in the Heterian and Ohauan Stages (Callovian-Tithonian), southwest Auckland, New Zealand.

    Get PDF
    Belemnopsis stevensi, Belemnopsis maccrawi, and Belemnopsis sp. A (Challinor 1979a) are synonymous; B. stevensi has priority. New belemnite material from Kawhia Harbour and Port Waikato, together with graphical study methods, indicates that many small fragmentary specimens associated with B. stevensi in the lower part of its stratigraphic range are probably the same taxon. B. stevensi has been found only in the Middle and Upper Heterian Stage (Lower Kimmeridgian) at Kawhia and only in the Lower Ohauan Stage (Upper Kimmeridgian) at Port Waikato. This apparently disjunct distribution is attributed to poor exposure in the relevant sections. Belemnopsis kiwiensis n.sp., Belemnopsis cf. sp. B, Belemnopsis sp. B, Belemnopsis sp. D, and Belemnopsis spp. are associated with B. stevensi near the lowest known point in its stratigraphic range. The distribution of stratigraphically useful belemnites within the Heterian and Ohauan Stages is: Conodicoelites spp. (Lower Heterian; correlated with Lower Callovian); Belemnopsis annae (Lower and Middle Heterian; Lower Callovian/Lower Kimmeridgian); Belemnopsis stevensi (Middle Heterian/Lower Ohauan; Kimmeridgian); Belemnopsis keari (Upper Heterian; Kimmeridgian); Belemnopsis trechmanni (Upper Ohauan; Upper Kimmeridgian/Middle Tithonian). The apparently extreme range of Belemnopsis annae remains unexplained. Klondyke Sandstone (new) is recognised as the basal member of Moewaka Formation (Port Waikato area)

    Particle dynamics inside shocks in Hamilton-Jacobi equations

    Full text link
    Characteristics of a Hamilton-Jacobi equation can be seen as action minimizing trajectories of fluid particles. For nonsmooth "viscosity" solutions, which give rise to discontinuous velocity fields, this description is usually pursued only up to the moment when trajectories hit a shock and cease to minimize the Lagrangian action. In this paper we show that for any convex Hamiltonian there exists a uniquely defined canonical global nonsmooth coalescing flow that extends particle trajectories and determines dynamics inside the shocks. We also provide a variational description of the corresponding effective velocity field inside shocks, and discuss relation to the "dissipative anomaly" in the limit of vanishing viscosity.Comment: 15 pages, no figures; to appear in Philos. Trans. R. Soc. series

    The Rotating-Wave Approximation: Consistency and Applicability from an Open Quantum System Analysis

    Full text link
    We provide an in-depth and thorough treatment of the validity of the rotating-wave approximation (RWA) in an open quantum system. We find that when it is introduced after tracing out the environment, all timescales of the open system are correctly reproduced, but the details of the quantum state may not be. The RWA made before the trace is more problematic: it results in incorrect values for environmentally-induced shifts to system frequencies, and the resulting theory has no Markovian limit. We point out that great care must be taken when coupling two open systems together under the RWA. Though the RWA can yield a master equation of Lindblad form similar to what one might get in the Markovian limit with white noise, the master equation for the two coupled systems is not a simple combination of the master equation for each system, as is possible in the Markovian limit. Such a naive combination yields inaccurate dynamics. To obtain the correct master equation for the composite system a proper consideration of the non-Markovian dynamics is required.Comment: 17 pages, 0 figures

    Contemporaneous XMM-Newton investigation of a giant X-ray flare and quiescent state from a cool M-class dwarf in the local cavity

    Full text link
    We report the serendipitous detection of a giant X-ray flare from the source 2XMM J043527.2-144301 during an XMM-Newton observation of the high latitude molecular cloud MBM20. The source has not been previously studied at any wavelength. The X-ray flux increases by a factor of more than 52 from quiescent state to peak of flare. A 2MASS counterpart has been identified (2MASS J04352724-1443017), and near-infrared colors reveal a spectral type of M8-M8.5 and a distance of (67\pm 13) pc, placing the source in front of MBM20. Spectral analysis and source luminosity are also consistent with this conclusion. The measured distance makes this object the most distant source (by about a factor of 4) at this spectral type detected in X-rays. The X-ray flare was characterized by peak X-ray luminosity of ~8.2E28 erg s-1 and integrated X-ray energy of ~2.3E32 erg. The flare emission has been characterized with a 2-temperature model with temperatures of ~10 and 46 MK (0.82 and 3.97 keV), and is dominated by the higher temperature component.Comment: 19 pages, 5 figures; Accepted for publication on Ap

    The equilibrium states of open quantum systems in the strong coupling regime

    Full text link
    In this work we investigate the late-time stationary states of open quantum systems coupled to a thermal reservoir in the strong coupling regime. In general such systems do not necessarily relax to a Boltzmann distribution if the coupling to the thermal reservoir is non-vanishing or equivalently if the relaxation timescales are finite. Using a variety of non-equilibrium formalisms valid for non-Markovian processes, we show that starting from a product state of the closed system = system + environment, with the environment in its thermal state, the open system which results from coarse graining the environment will evolve towards an equilibrium state at late-times. This state can be expressed as the reduced state of the closed system thermal state at the temperature of the environment. For a linear (harmonic) system and environment, which is exactly solvable, we are able to show in a rigorous way that all multi-time correlations of the open system evolve towards those of the closed system thermal state. Multi-time correlations are especially relevant in the non-Markovian regime, since they cannot be generated by the dynamics of the single-time correlations. For more general systems, which cannot be exactly solved, we are able to provide a general proof that all single-time correlations of the open system evolve to those of the closed system thermal state, to first order in the relaxation rates. For the special case of a zero-temperature reservoir, we are able to explicitly construct the reduced closed system thermal state in terms of the environmental correlations.Comment: 20 pages, 2 figure
    • 

    corecore