4,955 research outputs found
Quenched and Negative Hall Effect in Periodic Media: Application to Antidot Superlattices
We find the counterintuitive result that electrons move in OPPOSITE direction
to the free electron E x B - drift when subject to a two-dimensional periodic
potential. We show that this phenomenon arises from chaotic channeling
trajectories and by a subtle mechanism leads to a NEGATIVE value of the Hall
resistivity for small magnetic fields. The effect is present also in
experimentally recorded Hall curves in antidot arrays on semiconductor
heterojunctions but so far has remained unexplained.Comment: 10 pages, 4 figs on request, RevTeX3.0, Europhysics Letters, in pres
The possibility of a metal insulator transition in antidot arrays induced by an external driving
It is shown that a family of models associated with the kicked Harper model
is relevant for cyclotron resonance experiments in an antidot array. For this
purpose a simplified model for electronic motion in a related model system in
presence of a magnetic field and an AC electric field is developed. In the
limit of strong magnetic field it reduces to a model similar to the kicked
Harper model. This model is studied numerically and is found to be extremely
sensitive to the strength of the electric field. In particular, as the strength
of the electric field is varied a metal -- insulator transition may be found.
The experimental conditions required for this transition are discussed.Comment: 6 files: kharp.tex, fig1.ps fig2.ps fi3.ps fig4.ps fig5.p
Predictive Value of Updating Framingham Risk Scores with Novel Risk Markers in the U.S. General Population
Background: According to population-based cohort studies CT coronary calcium score (CTCS), carotid intima-media thickness (cIMT), high-sensitivity C- reactive protein (CRP), and ankle-brachial index (ABI) are promising novel risk markers for improving cardiovascular risk assessment. Their impact in the U.S. general population is however uncertain. Our aim was to estimate the predictive value of four novel cardiovascular risk markers for the U.S. general population. Methods and Findings: Risk profiles, CRP and ABI data of 3,736 asymptomatic subjects aged 40 or older from the National Health and Nutrition Examination Survey (NHANES) 2003–2004 exam were used along with predicted CTCS and cIMT values. For each subject, we calculated 10-year cardiovascular risks with and without each risk marker. Event rates adjusted for competing risks were obtained by microsimulation. We assessed the impact of updated 10-year risk scores by reclassification and C-statistics. In the study population (mean age 56±11 years, 48% male), 70% (80%) were at low (<10%), 19% (14%) at intermediate (≥10–<20%), and 11% (6%) at high (≥20%) 10-year CVD (CHD) risk. Net reclassification improvement was highest after updating 10-year CVD risk with CTCS: 0.10 (95%CI 0.02–0.19). The C-statistic for 10-year CVD risk increased from 0.82 by 0.02 (95%CI 0.01–0.03) with CTCS. Reclassification occurred most often in those at intermediate risk: with CTCS, 36% (38%) moved to low and 22% (30%) to high CVD (CHD) risk. Improvements with other novel risk markers were limited. Conclusions: Only CTCS appeared to have significant incremental predictive value in the U.S. general population, especially in those at intermediate risk. In future research, cost-effectiveness analyses should be considered for evaluating novel cardiovascular risk assessment strategies
Large deviation probabilities for some rescaled superprocesses.
We consider a class of rescaled superprocesses and derive a full large deviation principle with a good convex rate functional defined on the measure state space. A relatively complete picture of the related non-linear reaction-diffusion equation is accomplished although the rate functional is only partly expressed in terms of solutions of the equation
Skipping orbits and enhanced resistivity in large-diameter InAs/GaSb antidot lattices
We investigated the magnetotransport properties of high-mobility InAs/GaSb
antidot lattices. In addition to the usual commensurability features at low
magnetic field we found a broad maximum of classical origin around 2.5 T. The
latter can be ascribed to a class of rosetta type orbits encircling a single
antidot. This is shown by both a simple transport calculation based on a
classical Kubo formula and an analysis of the Poincare surface of section at
different magnetic field values. At low temperatures we observe weak
1/B-periodic oscillations superimposed on the classical maximum.Comment: 4 pages, 4 Postscript figures, REVTeX, submitted to Phys Rev
Perfectly Translating Lattices on a Cylinder
We perform molecular dynamics simulations on an interacting electron gas
confined to a cylindrical surface and subject to a radial magnetic field and
the field of the positive background. In order to study the system at lowest
energy states that still carry a current, initial configurations are obtained
by a special quenching procedure. We observe the formation of a steady state in
which the entire electron-lattice cycles with a common uniform velocity.
Certain runs show an intermediate instability leading to lattice
rearrangements. A Hall resistance can be defined and depends linearly on the
magnetic field with an anomalous coefficient reflecting the manybody
contributions peculiar to two dimensions.Comment: 13 pages, 5 figure
Massive normalization of olfactory bulb output in mice with a 'monoclonal nose'
Perturbations in neural circuits can provide mechanistic understanding of the neural correlates of behavior. In M71 transgenic mice with a 'monoclonal nose', glomerular input patterns in the olfactory bulb are massively perturbed and olfactory behaviors are altered. To gain insights into how olfactory circuits can process such degraded inputs we characterized odor-evoked responses of olfactory bulb mitral cells and interneurons. Surprisingly, calcium imaging experiments reveal that mitral cell responses in M71 transgenic mice are largely normal, highlighting a remarkable capacity of olfactory circuits to normalize sensory input. In vivo whole cell recordings suggest that feedforward inhibition from olfactory bulb periglomerular cells can mediate this signal normalization. Together, our results identify inhibitory circuits in the olfactory bulb as a mechanistic basis for many of the behavioral phenotypes of mice with a 'monoclonal nose' and highlight how substantially degraded odor input can be transformed to yield meaningful olfactory bulb output
Self-similar stable processes arising from high-density limits of occupation times of particle systems
We extend results on time-rescaled occupation time fluctuation limits of the
-branching particle system with Poisson initial condition. The earlier results in the homogeneous case
(i.e., with Lebesgue initial intensity measure) were obtained for dimensions
only, since the particle system becomes locally extinct if
. In this paper we show that by introducing high density
of the initial Poisson configuration, limits are obtained for all dimensions,
and they coincide with the previous ones if . We also give
high-density limits for the systems with finite intensity measures (without
high density no limits exist in this case due to extinction); the results are
different and harder to obtain due to the non-invariance of the measure for the
particle motion. In both cases, i.e., Lebesgue and finite intensity measures,
for low dimensions ( and
, respectively) the limits are determined by
non-L\'evy self-similar stable processes. For the corresponding high dimensions
the limits are qualitatively different: -valued L\'evy
processes in the Lebesgue case, stable processes constant in time on
in the finite measure case. For high dimensions, the laws of all
limit processes are expressed in terms of Riesz potentials. If , the
limits are Gaussian. Limits are also given for particle systems without
branching, which yields in particular weighted fractional Brownian motions in
low dimensions. The results are obtained in the setup of weak convergence of
S'(R^d)$-valued processes.Comment: 28 page
Photogalvanic current in artificial asymmetric nanostructures
We develop a theoretic description of the photogalvanic current induced by a
high frequency radiation in asymmetric nanostructures and show that it
describes well the results of numerical simulations. Our studies allow to
understand the origin of the electronic ratchet transport in such systems and
show that they can be used for creation of new types of detectors operating at
room temperature in a terahertz radiation range.Comment: 11 pages, 9 figs, EPJ latex styl
Recurrent back pain during working life and exit from paid employment : a 28-year follow-up of the Whitehall II Study.
Objectives To examine the impact of recurrent, as compared with single, reports of back pain on exit from paid employment over decades of follow-up. Methods The study sample was from the British Whitehall II Study cohort (n=8665, 69% men, aged 35-55 at baseline), who had provided information about their reports of back pain between 1985 and 1994. Data about exit from paid employment (health-related and non-health related exit, unemployment and other exit) were collected between 1995 and 2013. Repeated measures logistic regression models were fitted to examine the associations, and adjust for covariates. Results Recurrent pain was reported by 18% of participants, while 26% reported pain on an occasion and 56% did not report pain. Report of back pain on an occasion was not associated with health-related job exit, whereas recurrent pain was associated with such an exit (OR 1.51; 95% CI 1.15 to 1.99), when compared with those who did not report pain. These associations were somewhat stronger among middle-grade and lower-grade employees, while these associations were not seen among higher-grade employees. Differences in associations by age and psychosocial working conditions were small. Conclusions These results highlight the need for early detection of recurrent back pain to prevent exit out of paid employment for health reasons. As the risk varies by occupational grade, this emphasises the importance of identification of high-risk groups and finding ways to address their modifiable risk factors.Peer reviewe
- …