1,155 research outputs found

    Porphyridium purpureum: Strukturierte Modellbildung und experimentelle Validierung der Stoffwechselreaktion auf Hell-Dunkel-Zyklen

    Get PDF
    Weit ĂŒber 25.000 Arten von Mikroalgen stellen ein bislang kaum erschlossenes Potential fĂŒr die Biotechnologie dar. Sie bilden vielfĂ€ltige Produkte wie Farbstoffe, ungesĂ€ttigte FettsĂ€uren, Polysaccharide und Antioxidanten mit interessanten Einsatzgebieten u.a. in der Lebensmittel- und Kosmetikindustrie. Pharmazeutisch wirksame Produkte aus Mikroalgen sind bekannt, aber noch unzulĂ€nglich untersucht. Um ihre Bildung nĂ€her verstehen und in grĂ¶ĂŸerem Maßstab (scale up) durch geeignete Auswahl von Kultivierungsparametern beeinflussen zu können, wird ein mathematisches Modell entwickelt, welches das Wachstum und die Produktbildung einer einzelligen Mikroalge Porphyridium purpureum abbildet. Die Validierung des entwickelten mathematischen Modells erfolgt durch den Einsatz von geeigneten experimentell gewonnenen Kultivierungsdaten der Mikroalge Porphyridium purpureum in AbhĂ€ngigkeit von Kultivierungsparametern wie der LichtquantitĂ€t oder -qualitĂ€t in einem am Institut fĂŒr Mechanische Verfahrenstechnik und Mechanik entwickelten Photobioreaktor. Die experimentellen Untersuchungen zu Wachstum und Produktbildung der Mikroalge sowie die Modellierung ihrer StoffwechselaktivitĂ€t zur besseren Vorhersagbarkeit und zur Auslegung von Pilotanlagen stellen die beiden Hauptschwerpunkte dieser Arbeit dar

    Inner ear tissue preservation by rapid freezing: improving fixation by high-pressure freezing and hybrid methods

    Get PDF
    In the preservation of tissues in as ‘close to life’ state as possible, rapid freeze fixation has many benefits over conventional chemical fixation. One technique by which rapid freeze-fixation can be achieved, high pressure freezing (HPF), has been shown to enable ice crystal artefact-free freezing and tissue preservation to greater depths (more than 40ÎŒm) than other quick-freezing methods. Despite increasingly becoming routine in electron microscopy, the use of HPF for the fixation of inner ear tissue has been limited. Assessment of the quality of preservation showed routine HPF techniques were suitable for preparation of inner ear tissues in a variety of species. Good preservation throughout the depth of sensory epithelia was achievable. Comparison to chemically fixed tissue indicated that fresh frozen preparations exhibited overall superior structural preservation of cells. However, HPF fixation caused characteristic artefacts in stereocilia that suggested poor quality freezing of the actin bundles. The hybrid technique of pre-fixation and high pressure freezing was shown to produce cellular preservation throughout the tissue, similar to that seen in HPF alone. Pre-fixation HPF produced consistent high quality preservation of stereociliary actin bundles. Optimising the preparation of samples with minimal artefact formation allows analysis of the links between ultrastructure and function in inner ear tissues

    Clumpy outer Galaxy molecular clouds and the steepening of the IMF

    Get PDF
    We report the results of high-resolution (~0.2 pc) CO(1-0) and CS(2-1) observations of the central regions of three star-forming molecular clouds in the far-outer Galaxy (~16 kpc from the Galactic Center): WB89 85 (Sh 2-127), WB89 380, and WB89 437. We used the BIMA array in combination with IRAM 30-m and NRAO 12-m observations. The GMC's in which the regions are embedded were studied by means of KOSMA 3-m CO(2-1) observations. The properties the CO and CS clumps are analyzed and compared with newly derived results of previously published single-dish measurements of local clouds (OrionB South and Rosette). We find that the slopes of the clump mass distributions (-1.28 and -1.49, for WB89 85 and WB89 380, respectively) are somewhat less steep than found for most local clouds, but similar to those of clouds which have been analyzed with the same clumpfind program. We investigate the clump stability by using the virial theorem, including all possible contributions (gravity, turbulence, magnetic fields, and pressure due to the interclump gas). It appears that under reasonable assumptions a combination of these forces would render most clumps stable. Comparing only gravity and turbulence, we find that in the far-outer Galaxy clouds, these forces are in equilibium (virial parameter alpha~1) for clumps down to the lowest masses found (a few Msol). For clumps in the local clouds alpha~1 only for clumps with masses larger than a few tens of Msol. Thus it appears that in these outer Galaxy clumps gravity is the dominant force down to a much lower mass than in local clouds, implying that gravitational collapse and star formation may occur more readily even in the smallest clumps. Although there are some caveats, due to the inhomogeneity of the data used, this might explain the apparently steeper IMF found in the outer Galaxy.Comment: 29 pages, including 9 tables, 21 figures. Accepted for Astron. Astrop

    The stellar mass spectrum from non-isothermal gravoturbulent fragmentation

    Full text link
    Identifying the processes that determine the initial mass function of stars (IMF) is a fundamental problem in star formation theory. One of the major uncertainties is the exact chemical state of the star forming gas and its influence on the dynamical evolution. Most simulations of star forming clusters use an isothermal equation of state (EOS). However, theoretical predictions and observations suggest that the effective polytropic exponent gamma in the EOS varies with density. We address these issues and study the effect of a piecewise polytropic EOS on the formation of stellar clusters in turbulent, self-gravitating molecular clouds using three-dimensional, smoothed particle hydrodynamics simulations. To approximate the results of published predictions of the thermal behavior of collapsing clouds, we increase the polytropic exponent gamma from 0.7 to 1.1 at some chosen density n_c, which we vary. The change of thermodynamic state at n_c selects a characteristic mass scale for fragmentation M_ch, which we relate to the peak of the observed IMF. Our investigation generally supports the idea that the distribution of stellar masses depends mainly on the thermodynamic state of the star-forming gas. The thermodynamic state of interstellar gas is a result of the balance between heating and cooling processes, which in turn are determined by fundamental atomic and molecular physics and by chemical abundances. Given the abundances, the derivation of a characteristic stellar mass can thus be based on universal quantities and constants.Comment: 13 pages, 7 figures, accepted by A&

    Cervical spine biomechanics: A review of the literature

    Full text link
    This article reviews the many clinical and laboratory investigative research reports on the frequency, causes, and biomechanics of human cervical spine impact injuries and tolerances. Neck injury mechanisms have been hypothesized from clinically observed cervical spine injuries without laboratory verification. However, many of the laboratory experiments used static loading techniques of cervical spine segments. Only recently have dynamic impact studies been conducted. Results indicate that crown-of-head impacts can routinely produce compression of the neck with extension or flexion motion. However, the two-dimensional (midsagittal) movement of the head bowing into the chest does not routinely produce flexion/compression type damage to the cervical spine. Flexion/compression damage to the cervical spine can be produced by prepositioning the subject so that upon impact, a three-dimensional motion of the head and neck occurs. Future laboratory research is needed to determine the forces and impact directions required to produce the various known fracture types and dislocations for a clear, accurate description of the cervical spine impact dynamics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50376/1/1100040212_ftp.pd

    The Hubbard model within the equations of motion approach

    Full text link
    The Hubbard model has a special role in Condensed Matter Theory as it is considered as the simplest Hamiltonian model one can write in order to describe anomalous physical properties of some class of real materials. Unfortunately, this model is not exactly solved except for some limits and therefore one should resort to analytical methods, like the Equations of Motion Approach, or to numerical techniques in order to attain a description of its relevant features in the whole range of physical parameters (interaction, filling and temperature). In this manuscript, the Composite Operator Method, which exploits the above mentioned analytical technique, is presented and systematically applied in order to get information about the behavior of all relevant properties of the model (local, thermodynamic, single- and two- particle ones) in comparison with many other analytical techniques, the above cited known limits and numerical simulations. Within this approach, the Hubbard model is shown to be also capable to describe some anomalous behaviors of the cuprate superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference

    Quantification and characterisation of porosity in selectively laser melted Al–Si10–Mg using x-ray computed tomography

    Get PDF
    We used X-ray computed tomography (CT), microscopy and hardness measurements to study Al–Si10–Mg produced by selective laser melting (SLM). Specimens were subject to a series of heat treatments including annealing and precipitation hardening. The specimen interiors were imaged with X-ray CT, allowing the non-destructive quantification and characterisation of pores, including their spatial distribution. The specimens had porosities less than 0.1%, but included some pores with effective cross-sectional diameters up to 260 ÎŒm. The largest pores were highly anisotropic, being flat and lying in the plane normal to the build direction. Annealing cycles caused significant coarsening of the microstructure and a reduction of the hardness from (114 ± 3) HV, in the as-built state, to (45 ± 1) HV, while precipitation hardening increased this to a final hardness of (59 ± 1) HV. The pore size and shape distributions were unaffected by the heat treatments. We demonstrate the applicability of CT measurements and quantitative defect analysis for the purposes of SLM process monitoring and refinement

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentre−of−massframeisusedtosuppressthelargemulti−jetbackground.Thecross−sectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT
    • 

    corecore