372 research outputs found
The collision of two slowly rotating, initially non boosted, black holes in the close limit
We study the collision of two slowly rotating, initially non boosted, black
holes in the close limit. A ``punctures'' modification of the Bowen - York
method is used to construct conformally flat initial data appropriate to the
problem. We keep only the lowest nontrivial orders capable of giving rise to
radiation of both gravitational energy and angular momentum. We show that even
with these simplifications an extension to higher orders of the linear
Regge-Wheeler-Zerilli black hole perturbation theory, is required to deal with
the evolution equations of the leading contributing multipoles. This extension
is derived, together with appropriate extensions of the Regge-Wheeler and
Zerilli equations. The data is numerically evolved using these equations, to
obtain the asymptotic gravitational wave forms and amplitudes. Expressions for
the radiated gravitational energy and angular momentum are derived and used
together with the results of the numerical evolution to provide quantitative
expressions for the relative contribution of different terms, and their
significance is analyzed.Comment: revtex, 18 pages, 2 figures. Misprints corrected. To be published in
Phys. Rev.
Extended Birkhoff's Theorem in the f(T) Gravity
The f(T) theory, a generally modified teleparallel gravity, has been proposed
as an alternative gravity model to account for the dark energy phenomena.
Following our previous work [Xin-he Meng and Ying-bin Wang, EPJC(2011),
arXiv:1107.0629v1], we prove that the Birkhoff's theorem holds in a more
general context, specifically with the off diagonal tetrad case, in this
communication letter. Then, we discuss respectively the results of the external
vacuum and internal gravitational field in the f(T) gravity framework, as well
as the extended meaning of this theorem. We also investigate the validity of
the Birkhoff's theorem in the frame of f(T) gravity via conformal
transformation by regarding the Brans-Dicke-like scalar as effective matter,
and study the equivalence between both Einstein frame and Jordan frame.Comment: 7 pages, 1 figure, submitted to EPJ-C. arXiv admin note: substantial
text overlap with arXiv:1107.062
Birkhoff's Theorem in f(T) Gravity up to the Perturbative Order
f(T) gravity, a generally modified teleparallel gravity, has become very
popular in recent times as it is able to reproduce the unification of inflation
and late-time acceleration without the need of a dark energy component or an
inflation field. In this present work, we investigate specifically the range of
validity of Birkhoff's theorem with the general tetrad field via perturbative
approach. At zero order, Birkhoff's theorem is valid and the solution is the
well known Schwarzschild-(A)dS metric. Then considering the special case of the
diagonal tetrad field, we present a new spherically symmetric solution in the
frame of f(T) gravity up to the perturbative order. The results with the
diagonal tetrad field satisfy the physical equivalence between the Jordan and
the so-called Einstein frames, which are realized via conformal transformation,
at least up to the first perturbative order.Comment: 8 pages, no figure. Final version, accepted for publication in EPJ
Birkhoff's theorem in the f(T) gravity
Generalized from the so-called teleparallel gravity which is exactly
equivalent to general relativity, the gravity has been proposed as an
alternative gravity model to account for the dark energy phenomena. In this
letter we prove that the external vacuum gravitational field for a spherically
symmetric distribution of source matter in the gravity framework must be
static and the conclusion is independent of the radial distribution and
spherically symmetric motion of the source matter that is, whether it is in
motion or static. As a consequence, the Birkhoff's theorem is valid in the
general theory. We also discuss its application in the de Sitter
space-time evolution phase as preferred to by the nowadays dark energy
observations.Comment: 5p
Scaling solution, radion stabilization, and initial condition for brane-world cosmology
We propose a new, self-consistent and dynamical scenario which gives rise to
well-defined initial conditions for five-dimensional brane-world cosmologies
with radion stabilization. At high energies, the five-dimensional effective
theory is assumed to have a scale invariance so that it admits an expanding
scaling solution as a future attractor. The system automatically approaches the
scaling solution and, hence, the initial condition for the subsequent
low-energy brane cosmology is set by the scaling solution. At low energies, the
scale invariance is broken and a radion stabilization mechanism drives the
dynamics of the brane-world system. We present an exact, analytic scaling
solution for a class of scale-invariant effective theories of five-dimensional
brane-world models which includes the five-dimensional reduction of the
Horava-Witten theory, and provide convincing evidence that the scaling solution
is a future attractor.Comment: 17 pages; version accepted for PRD, references adde
Holographic Dark Energy Model and Scalar-Tensor Theories
We study the holographic dark energy model in a generalized scalar tensor
theory. In a universe filled with cold dark matter and dark energy, the effect
of potential of the scalar field is investigated in the equation of state
parameter. We show that for a various types of potentials, the equation of
state parameter is negative and transition from deceleration to acceleration
expansion of the universe is possible.Comment: 11 pages, no figure. To appear in General Relativity and Gravitatio
Calibration of Super-Kamiokande Using an Electron Linac
In order to calibrate the Super-Kamiokande experiment for solar neutrino
measurements, a linear accelerator (LINAC) for electrons was installed at the
detector. LINAC data were taken at various positions in the detector volume,
tracking the detector response in the variables relevant to solar neutrino
analysis. In particular, the absolute energy scale is now known with less than
1 percent uncertainty.Comment: 24 pages, 16 figures, Submitted to NIM
Detector Description and Performance for the First Coincidence Observations between LIGO and GEO
For 17 days in August and September 2002, the LIGO and GEO interferometer
gravitational wave detectors were operated in coincidence to produce their
first data for scientific analysis. Although the detectors were still far from
their design sensitivity levels, the data can be used to place better upper
limits on the flux of gravitational waves incident on the earth than previous
direct measurements. This paper describes the instruments and the data in some
detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial
change
The Dynamics of Brane-World Cosmological Models
Brane-world cosmology is motivated by recent developments in string/M-theory
and offers a new perspective on the hierarchy problem. In the brane-world
scenario, our Universe is a four-dimensional subspace or {\em brane} embedded
in a higher-dimensional {\em bulk} spacetime. Ordinary matter fields are
confined to the brane while the gravitational field can also propagate in the
bulk, leading to modifications of Einstein's theory of general relativity at
high energies. In particular, the Randall-Sundrum-type models are
self-consistent and simple and allow for an investigation of the essential
non-linear gravitational dynamics. The governing field equations induced on the
brane differ from the general relativistic equations in that there are nonlocal
effects from the free gravitational field in the bulk, transmitted via the
projection of the bulk Weyl tensor, and the local quadratic energy-momentum
corrections, which are significant in the high-energy regime close to the
initial singularity. In this review we discuss the asymptotic dynamical
evolution of spatially homogeneous brane-world cosmological models containing
both a perfect fluid and a scalar field close to the initial singularity. Using
dynamical systems techniques it is found that, for models with a physically
relevant equation of state, an isotropic singularity is a past-attractor in all
orthogonal spatially homogeneous models (including Bianchi type IX models). In
addition, we describe the dynamics in a class of inhomogeneous brane-world
models, and show that these models also have an isotropic initial singularity.
These results provide support for the conjecture that typically the initial
cosmological singularity is isotropic in brane-world cosmology.Comment: Einstein Centennial Review Article: to appear in CJ
- …