8 research outputs found

    NIOX VERO: Individualized Asthma Management in Clinical Practice

    Get PDF
    As we move toward an era of precision medicine, novel biomarkers of disease will enable the identification and personalized treatment of new endotypes. In asthma, fractional exhaled nitric oxide (FeNO) serves as a surrogate marker of airway inflammation that often correlates with the presence of sputum eosinophils. The increase in FeNO is driven by an upregulation of inducible nitric oxide synthase (iNOS) by cytokines, which are released as a result of type-2 airway inflammation. Scientific evidence supports using FeNO in routine clinical practice. In steroid-naive patients and in patients with mild asthma, FeNO levels decrease within days after corticosteroid treatment in a dose-dependent fashion and increase after steroid withdrawal. In difficult asthma, FeNO testing correlates with anti-inflammatory therapy compliance. Assessing adherence by FeNO testing can remove the confrontational aspect of questioning a patient about compliance and change the conversation to one of goal setting and ways to improve disease management. However, the most important aspect of incorporating FeNO in asthma management is the reduction in the risk of exacerbations. In a recent primary care study, reduction of exacerbation rates and improved symptom control without increasing overall inhaled corticosteroid (ICS) use were demonstrated when a FeNO-guided anti-inflammatory treatment algorithm was assessed and compared to the standard care. A truly personalized asthma management approach—showing reduction of exacerbation rates, overall use of ICS and neonatal hospitalizations—was demonstrated when FeNO testing was applied as part of the treatment algorithm that managed asthma during pregnancy. The aim of this article is to describe how FeNO and the NIOX VERO® analyzer can help to optimize diagnosis and treatment choices and to aid in the monitoring and improvement of clinical asthma outcomes in children and adults

    Domestic exposure to volatile organic compounds in relation to asthma and allergy in children and adults

    No full text
    Over the past decades, the prevalence of asthma, allergic disease and atopy has increased significantly and in parallel with the increased use of products and materials emitting volatile organic compounds (VOCs) in the indoor environment. The purpose of this review is to examine the evidence of the relationship between quantitatively measured domestic exposure to VOCs and allergic diseases and allergy in children and adults. Sources, potential immune-inflammatory mechanisms and risks for development and severity of asthma and allergy have been addressed. Available evidence is based on studies that have mainly used observational designs of variable quality. Total, aromatic, aliphatic, microbial VOCs and aldehydes have been the most widely investigated VOC classes, with formaldehyde being the most commonly examined single compound. Overall, the evidence is inadequate to draw any firm conclusions. However, given indicative evidence from a few high-quality studies and significant potential for improvements in asthma outcomes in those with established disease, there is a need to consider undertaking further investigation of the relationship between domestic VOC exposure and asthma/allergy outcomes that should encompass both high-quality, robust observational studies and ultimately clinical trials assessing the impact of interventions that aim to reduce VOC exposure in children and adults with asthma

    Perinatal and early childhood environmental factors influencing allergic asthma immunopathogenesis

    No full text
    corecore