3,104 research outputs found
Similarity-Detection and Localization
The detection of similarities between long DNA and protein sequences is
studied using concepts of statistical physics. It is shown that mutual
similarities can be detected by sequence alignment methods only if their amount
exceeds a threshold value. The onset of detection is a continuous phase
transition which can be viewed as a localization-delocalization transition. The
``fidelity'' of the alignment is the order parameter of that transition; it
leads to criteria for the selection of optimal alignment parameters.Comment: 4 pages including 4 figures (308kb post-script file
On-line 3D active pose-graph SLAM based on key poses using graph topology and sub-maps
© 2019 IEEE. In this paper, we present an on-line active pose-graph simultaneous localization and mapping (SLAM) frame-work for robots in three-dimensional (3D) environments using graph topology and sub-maps. This framework aims to find the best trajectory for loop-closure by re-visiting old poses based on the T-optimality and D-optimality metrics of the Fisher information matrix (FIM) in pose-graph SLAM. In order to reduce computational complexity, graph topologies are introduced, including weighted node degree (T-optimality metric) and weighted tree-connectivity (D-optimality metric), to choose a candidate trajectory and several key poses. With the help of the key poses, a sampling-based path planning method and a continuous-time trajectory optimization method are combined hierarchically and applied in the whole framework. So as to further improve the real-time capability of the method, the sub-map joining method is used in the estimation and planning process for large-scale active SLAM problems. In simulations and experiments, we validate our approach by comparing against existing methods, and we demonstrate the on-line planning part using a quad-rotor unmanned aerial vehicle (UAV)
Large Effects of Electric Fields on Atom-Molecule Collisions at Millikelvin Temperatures
Controlling interactions between cold molecules using external fields can
elucidate the role of quantum mechanics in molecular collisions. We create a
new experimental platform in which ultracold rubidium atoms and cold ammonia
molecules are separately trapped by magnetic and electric fields and then
combined to study collisions. We observe inelastic processes that are faster
than expected from earlier field-free calculations. We use quantum scattering
calculations to show that electric fields can have a major effect on collision
outcomes, even in the absence of dipole-dipole interactions.Comment: 5 pages, 4 figure
High-energy-resolution molecular beams for cold collision studies
Stark deceleration allows for precise control over the velocity of a pulsed
molecular beam and, by the nature of its limited phase-space acceptance,
reduces the energy width of the decelerated packet. We describe an alternate
method of operating a Stark decelerator that further reduces the energy spread
over the standard method of operation. In this alternate mode of operation, we
aggressively decelerate the molecular packet using a high phase angle. This
technique brings the molecular packet to the desired velocity before it reaches
the end of the decelerator; the remaining stages are then used to
longitudinally and transversely guide the packet to the detection/interaction
region. The result of the initial aggressive slowing is a reduction in the
phase-space acceptance of the decelerator and thus a narrowing of the velocity
spread of the molecular packet. In addition to the narrower energy spread, this
method also results in a velocity spread that is nearly independent of the
final velocity. Using the alternate deceleration technique, the energy
resolution of molecular collision measurements can be improved considerably.Comment: 12 pages, 9 figure
Photon number resolution using a time-multiplexed single-photon detector
Photon number resolving detectors are needed for a variety of applications
including linear-optics quantum computing. Here we describe the use of
time-multiplexing techniques that allows ordinary single photon detectors, such
as silicon avalanche photodiodes, to be used as photon number-resolving
detectors. The ability of such a detector to correctly measure the number of
photons for an incident number state is analyzed. The predicted results for an
incident coherent state are found to be in good agreement with the results of a
proof-of-principle experimental demonstration.Comment: REVTeX4, 6 pages, 8 eps figures, v2: minor changes, v3: changes in
response to referee report, appendix added, 1 reference adde
The UK's Global Health Respiratory Network: Improving respiratory health of the world's poorest through research collaborations.
Respiratory disorders are responsible for considerable morbidity, health care utilisation, societal costs and approximately one in five deaths worldwide [1-4]. Yet, despite this substantial health and societal burden â which particularly affects the worldâs poorest populations and as such is a major contributor to global health inequalities â respiratory disorders have historically not received the
policy priority they warrant. For example, despite causing an estimated 1000 deaths per day, less than half of the worldâs countries collect data on asthma prevalence (http://www.globalasthmareport.org/). This
is true for both communicable and non-communicable respiratory disorders, many of which are either amenable to treatment or preventable
- âŠ