5,608 research outputs found

    Single crystal growth and physical properties of a new uranium compound URhIn5_5

    Get PDF
    We have grown the new uranium compound URhIn5_5 with the tetragonal HoCoGa5_5-type by the In self flux method. In contrast to the nonmagnetic ground state of the isoelectronic analogue URhGa5_5, URhIn5_5 is an antiferromagnet with antiferromagnetic transition temperature TNT_{\rm N} = 98 K. The moderately large electronic specific heat coefficient γ\gamma = 50 mJ/K2^2mol demonstrates the contribution of 5ff electrons to the conduction band. On the other hand, magnetic susceptibility in the paramagnetic state roughly follows a Curie-Weiss law with a paramagnetic effective moment corresponding to a localized uranium ion. The crossover from localized to itinerant character at low temperature may occur around the characteristic temperature 150 K where the magnetic susceptibility and electrical resistivity show a marked anomaly.Comment: 7 pages, 7 figure

    A Comparison of the High-Frequency Magnetic Fluctuations in Insulating and Superconducting La2-xSrxCuO4

    Full text link
    Inelastic neutron scattering performed at a spallation source is used to make absolute measurements of the dynamic susceptibility of insulating La2CuO4 and superconducting La2-xSrxCuO4 over the energy range 15<EN<350 meV. The effect of Sr doping on the magnetic excitations is to cause a large broadening in wavevector and a substantial change in the spectrum of the local spin fluctuations. Comparison of the two compositions reveals a new energy scale of 22 meV in La1.86Sr0.14CuO4.Comment: RevTex, 7 Pages, 4 postscript figure

    Dependence of nuclear magnetic moments on quark masses and limits on temporal variation of fundamental constants from atomic clock experiments

    Full text link
    We calculate the dependence of the nuclear magnetic moments on the quark masses including the spin-spin interaction effects and obtain limits on the variation of the fine structure constant α\alpha and (mq/ΛQCD)(m_q/\Lambda_{QCD}) using recent atomic clock experiments examining hyperfine transitions in H, Rb, Cs, Yb+^+ and Hg+^+ and the optical transition in H, Hg+^+ and Yb+^+

    Unconventional Metallic Magnetism in LaCrSb{3}

    Get PDF
    Neutron-diffraction measurements in LaCrSb{3} show a coexistence of ferromagnetic and antiferromagnetic sublattices below Tc=126 K, with ordered moments of 1.65(4) and 0.49(4) Bohr magnetons per formula unit, respectively (T=10 K), and a spin reorientation transition at ~95 K. No clear peak or step was observed in the specific heat at Tc. Coexisting localized and itinerant spins are suggested.Comment: PRL, in pres

    A New Limit on the Antiproton Lifetime

    Full text link
    Measurements of the cosmic ray pbar/p ratio are compared to predictions from an inhomogeneous disk-diffusion model of pbar production and propagation within the Galaxy, combined with a calculation of the modulation of the interstellar cosmic ray spectra as the particles propagate through the heliosphere to the Earth. The predictions agree with the observed pbar/p spectrum. Adding a finite pbar lifetime to the model, we obtain the limit tau_pbar > 0.8 Myr (90 % C.L.).Comment: 13 pages, 3 encapsulated Postscript figures, uses AASTeX; accepted by Astrophysical Journal; minor change

    Efficient preparation and detection of microwave dressed-state qubits and qutrits with trapped ions

    Get PDF
    We demonstrate a method for preparing and detecting all eigenstates of a three-level microwave dressed system with a single trapped ion. The method significantly reduces the experimental complexity of gate operations with dressed-state qubits, as well as allowing all three of the dressed states to be prepared and detected, thereby providing access to a qutrit that is well protected from magnetic field noise. In addition, we demonstrate individual addressing of the clock transitions in two ions using a strong static magnetic field gradient, showing that our method can be used to prepare and detect microwave dressed states in a string of ions when performing multi-ion quantum operations with microwave and radio frequency fields. The individual addressability of clock transitions could also allow for the control of pairwise interaction strengths between arbitrary ions in a string using lasers

    Electronic tuning and uniform superconductivity in CeCoIn5

    Full text link
    We report a globally reversible effect of electronic tuning on the magnetic phase diagram in CeCoIn_{5} driven by electron (Pt and Sn) and hole (Cd, Hg) doping. Consequently, we are able to extract the superconducting pair breaking component for hole and electron dopants with pressure and co-doping studies, respectively. We find that these nominally non-magnetic dopants have a remarkably weak pair breaking effect for a d-wave superconductor. The pair breaking is weaker for hole dopants, which induce magnetic moments, than for electron dopants. Furthermore, both Pt and Sn doping have a similar effect on superconductivity despite being on different dopant sites, arguing against the notion that superconductivity lives predominantly in the CeIn_{3} planes of these materials. In addition, we shed qualitative understanding on the doping dependence with density functional theory calculations.Comment: Accepted for publication in Phys. Rev. Lett. (October 1, 2012
    corecore