4,717 research outputs found

    Spin Dynamics of Double-Exchange Manganites with Magnetic Frustration

    Full text link
    This work examines the effects of magnetic frustration due to competing ferromagnetic and antiferromagnetic Heisenberg interactions on the spin dynamics of the double-exchange model. When the local moments are non-colinear, a charge-density wave forms because the electrons prefer to sit on lines of sites that are coupled ferromagnetically. With increasing hopping energy, the local spins become aligned and the average spin-wave stiffness increases. Phase separation is found only within a narrow range of hopping energies. Results of this work are applied to the field-induced jump in the spin-wave stiffness observed in the manganite Pr1−x_{1-x}Cax_xMnO3_3 with 0.3≤x≤0.40.3 \le x \le 0.4.Comment: 10 pages, 3 figure

    Is transport in time-dependent random potentials universal ?

    Full text link
    The growth of the average kinetic energy of classical particles is studied for potentials that are random both in space and time. Such potentials are relevant for recent experiments in optics and in atom optics. It is found that for small velocities uniform acceleration takes place, and at a later stage fluctuations of the potential are encountered, resulting in a regime of anomalous diffusion. This regime was studied in the framework of the Fokker-Planck approximation. The diffusion coefficient in velocity was expressed in terms of the average power spectral density, which is the Fourier transform of the potential correlation function. This enabled to establish a scaling form for the Fokker-Planck equation and to compute the large and small velocity limits of the diffusion coefficient. A classification of the random potentials into universality classes, characterized by the form of the diffusion coefficient in the limit of large and small velocity, was performed. It was shown that one dimensional systems exhibit a large variety of novel universality classes, contrary to systems in higher dimensions, where only one universality class is possible. The relation to Chirikov resonances, that are central in the theory of Chaos, was demonstrated. The general theory was applied and numerically tested for specific physically relevant examples.Comment: 5 pages, 3 figure

    Double Exchange in a Magnetically Frustrated System

    Full text link
    This work examines the magnetic order and spin dynamics of a double-exchange model with competing ferromagnetic and antiferromagnetic Heisenberg interactions between the local moments. The Heisenberg interactions are periodically arranged in a Villain configuration in two dimensions with nearest-neighbor, ferromagnetic coupling JJ and antiferromagnetic coupling −ηJ-\eta J. This model is solved at zero temperature by performing a 1/S1/\sqrt{S} expansion in the rotated reference frame of each local moment. When η\eta exceeds a critical value, the ground state is a magnetically frustrated, canted antiferromagnet. With increasing hopping energy tt or magnetic field BB, the local moments become aligned and the ferromagnetic phase is stabilized above critical values of tt or BB. In the canted phase, a charge-density wave forms because the electrons prefer to sit on lines of sites that are coupled ferromagnetically. Due to a change in the topology of the Fermi surface from closed to open, phase separation occurs in a narrow range of parameters in the canted phase. In zero field, the long-wavelength spin waves are isotropic in the region of phase separation. Whereas the average spin-wave stiffness in the canted phase increases with tt or η\eta , it exhibits a more complicated dependence on field. This work strongly suggests that the jump in the spin-wave stiffness observed in Pr1−x_{1-x}Cax_xMnO3_3 with 0.3≤x≤0.40.3 \le x \le 0.4 at a field of 3 T is caused by the delocalization of the electrons rather than by the alignment of the antiferromagnetic regions.Comment: 28 pages, 12 figure

    Spin Diffusion in Double-Exchange Manganites

    Full text link
    The theoretical study of spin diffusion in double-exchange magnets by means of dynamical mean-field theory is presented. We demonstrate that the spin-diffusion coefficient becomes independent of the Hund's coupling JH in the range of parameters JH*S >> W >> T, W being the bandwidth, relevant to colossal magnetoresistive manganites in the metallic part of their phase diagram. Our study reveals a close correspondence as well as some counterintuitive differences between the results on Bethe and hypercubic lattices. Our results are in accord with neutron scattering data and with previous theoretical work for high temperatures.Comment: 4.0 pages, 3 figures, RevTeX 4, replaced with the published versio

    The role of quasi-momentum in the resonant dynamics of the atom-optics kicked rotor

    Full text link
    We examine the effect of the initial atomic momentum distribution on the dynamics of the atom-optical realisation of the quantum kicked rotor. The atoms are kicked by a pulsed optical lattice, the periodicity of which implies that quasi-momentum is conserved in the transport problem. We study and compare experimentally and theoretically two resonant limits of the kicked rotor: in the vicinity of the quantum resonances and in the semiclassical limit of vanishing kicking period. It is found that for the same experimental distribution of quasi-momenta, significant deviations from the kicked rotor model are induced close to quantum resonance, while close to the classical resonance (i.e. for small kicking period) the effect of the quasi-momentum vanishes.Comment: 10 pages, 4 figures, to be published in J. Phys. A, Special Issue on 'Trends in Quantum Chaotic Scattering

    Energy transfer in binary collisions of two gyrating charged particles in a magnetic field

    Full text link
    Binary collisions of the gyrating charged particles in an external magnetic field are considered within a classical second-order perturbation theory, i.e., up to contributions which are quadratic in the binary interaction, starting from the unperturbed helical motion of the particles. The calculations are done with the help of a binary collisions treatment which is valid for any strength of the magnetic field and involves all harmonics of the particles cyclotron motion. The energy transfer is explicitly calculated for a regularized and screened potential which is both of finite range and nonsingular at the origin. The validity of the perturbation treatment is evaluated by comparing with classical trajectory Monte Carlo (CTMC) calculations which also allow to investigate the strong collisions with large energy and velocity transfer at low velocities. For large initial velocities on the other hand, only small velocity transfers occur. There the nonperturbative numerical CTMC results agree excellently with the predictions of the perturbative treatment.Comment: 12 pages, 4 figure

    \u3cem\u3eIn vivo\u3c/em\u3e Imaging of Human Cone Photoreceptor Inner Segments

    Get PDF
    Purpose. An often overlooked prerequisite to cone photoreceptor gene therapy development is residual photoreceptor structure that can be rescued. While advances in adaptive optics (AO) retinal imaging have recently enabled direct visualization of individual cone and rod photoreceptors in the living human retina, these techniques largely detect strongly directionally-backscattered (waveguided) light from normal intact photoreceptors. This represents a major limitation in using existing AO imaging to quantify structure of remnant cones in degenerating retina. Methods. Photoreceptor inner segment structure was assessed with a novel AO scanning light ophthalmoscopy (AOSLO) differential phase technique, that we termed nonconfocal split-detector, in two healthy subjects and four subjects with achromatopsia. Ex vivo preparations of five healthy donor eyes were analyzed for comparison of inner segment diameter to that measured in vivo with split-detector AOSLO. Results. Nonconfocal split-detector AOSLO reveals the photoreceptor inner segment with or without the presence of a waveguiding outer segment. The diameter of inner segments measured in vivo is in good agreement with histology. A substantial number of foveal and parafoveal cone photoreceptors with apparently intact inner segments were identified in patients with the inherited disease achromatopsia. Conclusions. The application of nonconfocal split-detector to emerging human gene therapy trials will improve the potential of therapeutic success, by identifying patients with sufficient retained photoreceptor structure to benefit the most from intervention. Additionally, split-detector imaging may be useful for studies of other retinal degenerations such as AMD, retinitis pigmentosa, and choroideremia where the outer segment is lost before the remainder of the photoreceptor cell

    The BATSE experiment on the Compton Gamma Ray Observatory: Status and some early results

    Get PDF
    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (GRO) is a sensitive all-sky detector system. It consists of eight uncollimated detectors at the corners of the spacecraft which have a total energy range of 15 keV to 100 MeV. The primary objective of BATSE is the detection, location, and study of gamma ray bursts and other transient sources. The instrement also has considerable capability for the study of pulsars, solar flares, and other discrete high energy sources. The experiment is now in full operation, detecting about one gamma ray burst per day. A brief description of the on-orbit performance of BATSE is presented, along with examples of early results from some of the gamma ray bursts
    • …
    corecore