33,649 research outputs found

    Flight investigation of insect contamination and its alleviation

    Get PDF
    An investigation of leading edge contamination by insects was conducted with a JetStar airplane instrumented to detect transition on the outboard leading edge flap and equipped with a system to spray the leading edge in flight. The results of airline type flights with the JetStar indicated that insects can contaminate the leading edge during takeoff and climbout. The results also showed that the insects collected on the leading edges at 180 knots did not erode at cruise conditions for a laminar flow control airplane and caused premature transition of the laminar boundary layer. None of the superslick and hydrophobic surfaces tested showed any significant advantages in alleviating the insect contamination problem. While there may be other solutions to the insect contamination problem, the results of these tests with a spray system showed that a continouous water spray while encountering the insects is effective in preventing insect contamination of the leading edges

    Critical behavior of the three-dimensional bond-diluted Ising spin glass: Finite-size scaling functions and Universality

    Full text link
    We study the three-dimensional (3D) bond-diluted Edwards-Anderson (EA) model with binary interactions at a bond occupation of 45% by Monte Carlo (MC) simulations. Using an efficient cluster MC algorithm we are able to determine the universal finite-size scaling (FSS) functions and the critical exponents with high statistical accuracy. We observe small corrections to scaling for the measured observables. The critical quantities and the FSS functions indicate clearly that the bond-diluted model for dilutions above the critical dilution p*, at which a spin glass (SG) phase appears, lies in the same universality class as the 3D undiluted EA model with binary interactions. A comparison with the FSS functions of the 3D site-diluted EA model with Gaussian interactions at a site occupation of 62.5% gives very strong evidence for the universality of the SG transition in the 3D EA model.Comment: Revised version. 10 pages, 9 figures, 2 table

    Overconstrained dynamics in galaxy redshift surveys

    Full text link
    The least-action principle (LAP) method is used on four galaxy redshift surveys to measure the density parameter Omega_m and the matter and galaxy-galaxy power spectra. The datasets are PSCz, ORS, Mark III and SFI. The LAP method is applied on the surveys simultaneously, resulting in an overconstrained dynamical system that describes the cosmic overdensities and velocity flows. The system is solved by relaxing the constraint that each survey imposes upon the cosmic fields. A least-squares optimization of the errors that arise in the process yields the cosmic fields and the value of Omega_m that is the best fit to the ensemble of datasets. The analysis has been carried out with a high-resolution Gaussian smoothing of 500 km/s and over a spherical selected volume of radius 9,000 km/s. We have assigned a weight to each survey, depending on their density of sampling, and this parameter determines their relative influence in limiting the domain of the overall solution. The influence of each survey on the final value of Omega_m, the cosmographical features of the cosmic fields and the power spectra largely depends on the distribution function of the errors in the relaxation of the constraints. We find that PSCz and Mark III are closer to the final solution than ORS and SFI. The likelihood analysis yields Omega_m= 0.37\pm 0.01 to 1sigma level. PSCz and SFI are the closest to this value, whereas ORS and Mark III predict a somewhat lower Omega_m. The model of bias employed is a scale-dependent one, and we retain up to 42 bias coefficients b_{rl} in the spherical harmonics formalism. The predicted power spectra are estimated in the range of wavenumbers 0.02-0.49h Mpc^{-1}, and we compare these results with measurements recently reported in the literature.Comment: 10 pages, no figure

    Percolation Analysis of a Wiener Reconstruction of the IRAS 1.2 Jy Redshift Catalog

    Get PDF
    We present percolation analyses of Wiener Reconstructions of the IRAS 1.2 Jy Redshift Survey. There are ten reconstructions of galaxy density fields in real space spanning the range β=0.1\beta= 0.1 to 1.01.0, where β=Ω0.6/b{\beta}={\Omega^{0.6}}/b, Ω\Omega is the present dimensionless density and bb is the bias factor. Our method uses the growth of the largest cluster statistic to characterize the topology of a density field, where Gaussian randomized versions of the reconstructions are used as standards for analysis. For the reconstruction volume of radius, R100h1R {\approx} 100 h^{-1} Mpc, percolation analysis reveals a slight `meatball' topology for the real space, galaxy distribution of the IRAS survey. cosmology-galaxies:clustering-methods:numericalComment: Revised version accepted for publication in The Astrophysical Journal, January 10, 1997 issue, Vol.47

    Exact renormalization of the random transverse-field Ising spin chain in the strongly ordered and strongly disordered Griffiths phases

    Full text link
    The real-space renormalization group (RG) treatment of random transverse-field Ising spin chains by Fisher ({\it Phys. Rev. B{\bf 51}, 6411 (1995)}) has been extended into the strongly ordered and strongly disordered Griffiths phases and asymptotically exact results are obtained. In the non-critical region the asymmetry of the renormalization of the couplings and the transverse fields is related to a non-linear quantum control parameter, Δ\Delta, which is a natural measure of the distance from the quantum critical point. Δ\Delta, which is found to stay invariant along the RG trajectories and has been expressed by the initial disorder distributions, stands in the singularity exponents of different physical quantities (magnetization, susceptibility, specific heat, etc), which are exactly calculated. In this way we have observed a weak-universality scenario: the Griffiths-McCoy singularities does not depend on the form of the disorder, provided the non-linear quantum control parameter has the same value. The exact scaling function of the magnetization with a small applied magnetic field is calculated and the critical point magnetization singularity is determined in a simple, direct way.Comment: 11 page

    Maximum-Likelihood Comparisons of Tully-Fisher and Redshift Data: Constraints on Omega and Biasing

    Full text link
    We compare Tully-Fisher (TF) data for 838 galaxies within cz=3000 km/sec from the Mark III catalog to the peculiar velocity and density fields predicted from the 1.2 Jy IRAS redshift survey. Our goal is to test the relation between the galaxy density and velocity fields predicted by gravitational instability theory and linear biasing, and thereby to estimate βI=Ω0.6/bI,\beta_I = \Omega^{0.6}/b_I, where bIb_I is the linear bias parameter for IRAS galaxies. Adopting the IRAS velocity and density fields as a prior model, we maximize the likelihood of the raw TF observables, taking into account the full range of selection effects and properly treating triple-valued zones in the redshift-distance relation. Extensive tests with realistic simulated galaxy catalogs demonstrate that the method produces unbiased estimates of βI\beta_I and its error. When we apply the method to the real data, we model the presence of a small but significant velocity quadrupole residual (~3.3% of Hubble flow), which we argue is due to density fluctuations incompletely sampled by IRAS. The method then yields a maximum likelihood estimate βI=0.49±0.07\beta_I=0.49\pm 0.07 (1-sigma error). We discuss the constraints on Ω\Omega and biasing that follow if we assume a COBE-normalized CDM power spectrum. Our model also yields the 1-D noise noise in the velocity field, including IRAS prediction errors, which we find to be be 125 +/- 20 km/sec.Comment: 53 pages, 20 encapsulated figures, two tables. Submitted to the Astrophysical Journal. Also available at http://astro.stanford.edu/jeff

    Quantum critical phenomena of long-range interacting bosons in a time-dependent random potential

    Full text link
    We study the superfluid-insulator transition of a particle-hole symmetric system of long-range interacting bosons in a time-dependent random potential in two dimensions, using the momentum-shell renormalization-group method. We find a new stable fixed point with non-zero values of the parameters representing the short- and long-range interactions and disorder when the interaction is asymptotically logarithmic. This is contrasted to the non-random case with a logarithmic interaction, where the transition is argued to be first-order, and to the 1/r1/r Coulomb interaction case, where either a first-order transition or an XY-like transition is possible depending on the parameters. We propose that our model may be relevant in studying the vortex liquid-vortex glass transition of interacting vortex lines in point-disordered type-II superconductors.Comment: 10 pages, 3 figure

    Vectorial Loading of Processive Motor Proteins: Implementing a Landscape Picture

    Full text link
    Individual processive molecular motors, of which conventional kinesin is the most studied quantitatively, move along polar molecular tracks and, by exerting a force F=(Fx,Fy,Fz){\bm F} = (F_x,F_y,F_z) on a tether, drag cellular cargoes, {\em in vivo}, or spherical beads, {\em in vitro}, taking up to hundreds of nanometer-scale steps. From observations of velocities and the dispersion of displacements with time, under measured forces and controlled fuel supply (typically ATP), one may hope to obtain insight into the molecular motions undergone in the individual steps. In the simplest situation, the load force F{\bm F} may be regarded as a scalar resisting force, Fx<0F_x < 0, acting parallel to the track: however, experiments, originally by Gittes {\em et al.} (1996), have imposed perpendicular (or vertical) loads, Fz>0F_z > 0, while more recently Block and coworkers (2002, 2003) and Carter and Cross (2005) have studied {\em assisting} (or reverse) loads, Fx>0F_x > 0, and also sideways (or transverse) loads Fy0F_y \neq 0

    Radial Redshift Space Distortions

    Get PDF
    The radial component of the peculiar velocities of galaxies cause displacements in their positions in redshift space. We study the effect of the peculiar velocities on the linear redshift space two point correlation function. Our analysis takes into account the radial nature of the redshift space distortions and it highlights the limitations of the plane parallel approximation. We consider the problem of determining the value of \beta and the real space two point correlation function from the linear redshift space two point correlation function. The inversion method proposed here takes into account the radial nature of the redshift space distortions and can be applied to magnitude limited redshift surveys that have only partial sky coverage.Comment: 26 pages including 11 figures, to appear in Ap

    IRAS versus POTENT Density Fields on Large Scales: Biasing and Omega

    Get PDF
    The galaxy density field as extracted from the IRAS 1.2 Jy redshift survey is compared to the mass density field as reconstructed by the POTENT method from the Mark III catalog of peculiar velocities. The reconstruction is done with Gaussian smoothing of radius 12 h^{-1}Mpc, and the comparison is carried out within volumes of effective radii 31-46 h^{-1}Mpc, containing approximately 10-26 independent samples. Random and systematic errors are estimated from multiple realizations of mock catalogs drawn from a simulation that mimics the observed density field in the local universe. The relationship between the two density fields is found to be consistent with gravitational instability theory in the mildly nonlinear regime and a linear biasing relation between galaxies and mass. We measure beta = Omega^{0.6}/b_I = 0.89 \pm 0.12 within a volume of effective radius 40 h^{-1}Mpc, where b_I is the IRAS galaxy biasing parameter at 12 h^{-1}Mpc. This result is only weakly dependent on the comparison volume, suggesting that cosmic scatter is no greater than \pm 0.1. These data are thus consistent with Omega=1 and b_I\approx 1. If b_I>0.75, as theoretical models of biasing indicate, then Omega>0.33 at 95% confidence. A comparison with other estimates of beta suggests scale-dependence in the biasing relation for IRAS galaxies.Comment: 35 pages including 10 figures, AAS Latex, Submitted to The Astrophysical Journa
    corecore