622 research outputs found

    Angiotensin-(1-7) Receptor Mas in Hemodynamic and Thermoregulatory Dysfunction After High-Level Spinal Cord Injury in Mice: A Pilot Study

    Get PDF
    Spinal cord injury (SCI) above mid-thoracic levels leads to autonomic dysfunction affecting both the cardiovascular system and thermoregulation. The renin-angiotensin system (RAS) which is a potent regulator of blood pressure, including its novel beneficial arm with the receptor Mas could be an interesting target in post-SCI hemodynamics. To test the hypothesis that hemodynamics, activity and diurnal patterns of those are more affected in the Mas deficient mice post-SCI we used a mouse model of SCI with complete transection of spinal cord at thoracic level 4 (T4-Tx) and performed telemetric monitoring of blood pressure (BP) and heart rate (HR). Our data revealed that hypothermia deteriorated physiological BP and HR control. Preserving normothermia by keeping mice at 30°C prevented severe hypotension and bradycardia post-SCI. Moreover, it facilitated rapid return of diurnal regulation of BP, HR and activity in wild type (WT) mice. In contrast, although Mas deficient mice had comparable reacquisition of diurnal HR rhythm, they showed delayed recovery of diurnal rhythmicity in BP and significantly lower nocturnal activity. Exposing mice with T4-Tx (kept in temperature-controlled cages) to 23°C room temperature for one hour at different time-points post-SCI, demonstrated their inability to maintain core body temperature, Mas deficient mice being significantly more impaired than WT littermates. We conclude that Mas deficient mice were more resistant to acute hypotension, delayed nocturnal recovery, lower activity and more severely impaired thermoregulation. The ambient temperature had significant effect on hemodynamics and, thus it should be taken into account when assessing cardiovascular parameters post-SCI in mice

    Search for composite and exotic fermions at LEP 2

    Get PDF
    A search for unstable heavy fermions with the DELPHI detector at LEP is reported. Sequential and non-canonical leptons, as well as excited leptons and quarks, are considered. The data analysed correspond to an integrated luminosity of about 48 pb^{-1} at an e^+e^- centre-of-mass energy of 183 GeV and about 20 pb^{-1} equally shared between the centre-of-mass energies of 172 GeV and 161 GeV. The search for pair-produced new leptons establishes 95% confidence level mass limits in the region between 70 GeV/c^2 and 90 GeV/c^2, depending on the channel. The search for singly produced excited leptons and quarks establishes upper limits on the ratio of the coupling of the excited fermio

    Search for lightest neutralino and stau pair production in light gravitino scenarios with stau NLSP

    Get PDF
    Promptly decaying lightest neutralinos and long-lived staus are searched for in the context of light gravitino scenarios. It is assumed that the stau is the next to lightest supersymmetric particle (NLSP) and that the lightest neutralino is the next to NLSP (NNLSP). Data collected with the Delphi detector at centre-of-mass energies from 161 to 183 \GeV are analysed. No evidence of the production of these particles is found. Hence, lower mass limits for both kinds of particles are set at 95% C.L.. The mass of gaugino-like neutralinos is found to be greater than 71.5 GeV/c^2. In the search for long-lived stau, masses less than 70.0 to 77.5 \GeVcc are excluded for gravitino masses from 10 to 150 \eVcc . Combining this search with the searches for stable heavy leptons and Minimal Supersymmetric Standard Model staus a lower limit of 68.5 \GeVcc may be set for the stau mas

    Measurement of the 8B solar neutrino flux in SNO+ with very low backgrounds

    Get PDF
    A measurement of the 8B solar neutrino flux has been made using a 69.2 kt-day dataset acquired with the SNO+ detector during its water commissioning phase. At energies above 6 MeV the dataset is an extremely pure sample of solar neutrino elastic scattering events, owing primarily to the detector’s deep location, allowing an accurate measurement with relatively little exposure. In that energy region the best fit background rate is 0.25+0.09−0.07  events/kt−day, significantly lower than the measured solar neutrino event rate in that energy range, which is 1.03+0.13−0.12  events/kt−day. Also using data below this threshold, down to 5 MeV, fits of the solar neutrino event direction yielded an observed flux of 2.53+0.31−0.28(stat)+0.13−0.10(syst)×106  cm−2 s−1, assuming no neutrino oscillations. This rate is consistent with matter enhanced neutrino oscillations and measurements from other experiments

    ICTs connecting global citizens, global dialogue and global governance. A call for needful designs

    Get PDF
    Humankind is on the transition to a supra-system of humanity, according to which social relationships – that organise the common good – are re-organised such that global challenges are kept below the threshold of a self-inflicted breakdown. In order to succeed, three conditions are imperative: (1) Global governance needs a global conscience that orients towards the protection of the common good. (2) Such global governance needs a global dialogue on the state of the common good and the ways to proceed. (3) Such a global dialogue needs global citizens able to reflect upon the current state of the common good and the ways to proceed to desired states. Each of these imperatives is about a space of possibilities. Each space nests the following one such that they altogether form the scaffolding along which institutions can emerge that realise the imperatives when proper nuclei are introduced in those spaces. Such nuclei would already support each other. However, the clue is to further their integration by Information and Communication Technologies. An information platform shall be launched that could cover any task on any of the three levels, entangled with the articulation of cooperative action from the local to the global, based on the cybersubsidiarity model. This model is devised to ensure the percolation of meaningful information throughout the different organisational levels.2019-2

    Measurement of neutron-proton capture in the SNO+ water phase

    Get PDF
    The SNO+ experiment collected data as a low-threshold water Cherenkov detector from September 2017 to July 2019. Measurements of the 2.2-MeV γ\gamma produced by neutron capture on hydrogen have been made using an Am-Be calibration source, for which a large fraction of emitted neutrons are produced simultaneously with a 4.4-MeV γ\gamma. Analysis of the delayed coincidence between the 4.4-MeV γ\gamma and the 2.2-MeV capture γ\gamma revealed a neutron detection efficiency that is centered around 50% and varies at the level of 1% across the inner region of the detector, which to our knowledge is the highest efficiency achieved among pure water Cherenkov detectors. In addition, the neutron capture time constant was measured and converted to a thermal neutron-proton capture cross section of 336.31.5+1.2336.3^{+1.2}_{-1.5} mb

    Search for invisible modes of nucleon decay in water with the SNO+ detector

    Get PDF
    This paper reports results from a search for nucleon decay through invisible modes, where no visible energy is directly deposited during the decay itself, during the initial water phase of SNO+. However, such decays within the oxygen nucleus would produce an excited daughter that would subsequently deexcite, often emitting detectable gamma rays. A search for such gamma rays yields limits of 2.5×1029  y at 90% Bayesian credibility level (with a prior uniform in rate) for the partial lifetime of the neutron, and 3.6×1029  y for the partial lifetime of the proton, the latter a 70% improvement on the previous limit from SNO. We also present partial lifetime limits for invisible dinucleon modes of 1.3×1028  y for nn, 2.6×1028  y for pn and 4.7×1028  y for pp, an improvement over existing limits by close to 3 orders of magnitude for the latter two

    Shelled pteropods in peril: Assessing vulnerability in a high CO2 ocean

    Get PDF
    The impact of anthropogenic ocean acidification (OA) on marine ecosystems is a vital concern facing marine scientists and managers of ocean resources. Euthecosomatous pteropods (holoplanktonic gastropods) represent an excellent sentinel for indicating exposure to anthropogenic OA because of the sensitivity of their aragonite shells to the OA conditions less favorable for calcification. However, an integration of observations, experiments and modelling efforts is needed to make accurate predictions of how these organisms will respond to future changes to their environment. Our understanding of the underlying organismal biology and life history is far from complete and must be improved if we are to comprehend fully the responses of these organisms to the multitude of stressors in their environment beyond OA. This review considers the present state of research and understanding of euthecosomatous pteropod biology and ecology of these organisms and considers promising new laboratory methods, advances in instrumentation (such as molecular, trace elements, stable isotopes, palaeobiology alongside autonomous sampling platforms, CT scanning and high-quality video recording) and novel field-based approaches (i.e. studies of upwelling and CO2 vent regions) that may allow us to improve our predictive capacity of their vulnerability and/or resilience. In addition to playing a critical ecological and biogeochemical role, pteropods can offer a significant value as an early-indicator of anthropogenic OA. This role as a sentinel species should be developed further to consolidate their potential use within marine environmental management policy making

    Extrinsic Rewards and Intrinsic Motives: Standard and Behavioral Approaches to Agency and Labor Markets

    Full text link
    corecore