327 research outputs found

    Optical models of the molecular atmosphere

    Get PDF
    The use of optical and laser methods for performing atmospheric investigations has stimulated the development of the optical models of the atmosphere. The principles of constructing the optical models of molecular atmosphere for radiation with different spectral composition (wideband, narrowband, and monochromatic) are considered in the case of linear and nonlinear absorptions. The example of the development of a system which provides for the modeling of the processes of optical-wave energy transfer in the atmosphere is presented. Its physical foundations, structure, programming software, and functioning were considered

    Disorder-driven superconductor-normal metal phase transition in quasi-one-dimensional organic conductors

    Full text link
    Effects of non-magnetic disorder on the critical temperature T_c and on diamagnetism of quasi-one-dimensional superconductors are reported. The energy of Josephson-coupling between wires is considered to be random, which is typical for dirty organic superconductors. We show that this randomness destroys phase coherence between wires and that T_c vanishes discontinuously at a critical disorder-strength. The parallel and transverse components of the penetration-depth are evaluated. They diverge at different critical temperatures T_c^{(1)} and T_c, which correspond to pair-breaking and phase-coherence breaking respectively. The interplay between disorder and quantum phase fluctuations is shown to result in quantum critical behavior at T=0, which manifests itself as a superconducting-normal metal phase transition of first-order at a critical disorder strength.Comment: 12 pages, 3 figure

    Influence of Collision Cascade Statistics on Pattern Formation of Ion-Sputtered Surfaces

    Get PDF
    Theoretical continuum models that describe the formation of patterns on surfaces of targets undergoing ion-beam sputtering, are based on Sigmund's formula, which describes the spatial distribution of the energy deposited by the ion. For small angles of incidence and amorphous or polycrystalline materials, this description seems to be suitable, and leads to the classic BH morphological theory [R.M. Bradley and J.M.E. Harper, J. Vac. Sci. Technol. A 6, 2390 (1988)]. Here we study the sputtering of Cu crystals by means of numerical simulations under the binary-collision approximation. We observe significant deviations from Sigmund's energy distribution. In particular, the distribution that best fits our simulations has a minimum near the position where the ion penetrates the surface, and the decay of energy deposition with distance to ion trajectory is exponential rather than Gaussian. We provide a modified continuum theory which takes these effects into account and explores the implications of the modified energy distribution for the surface morphology. In marked contrast with BH's theory, the dependence of the sputtering yield with the angle of incidence is non-monotonous, with a maximum for non-grazing incidence angles.Comment: 12 pages, 13 figures, RevTe

    An Efficient Molecular Dynamics Scheme for the Calculation of Dopant Profiles due to Ion Implantation

    Get PDF
    We present a highly efficient molecular dynamics scheme for calculating the concentration depth profile of dopants in ion irradiated materials. The scheme incorporates several methods for reducing the computational overhead, plus a rare event algorithm that allows statistically reliable results to be obtained over a range of several orders of magnitude in the dopant concentration. We give examples of using this scheme for calculating concentration profiles of dopants in crystalline silicon. Here we can predict the experimental profile over five orders of magnitude for both channeling and non-channeling implants at energies up to 100s of keV. The scheme has advantages over binary collision approximation (BCA) simulations, in that it does not rely on a large set of empirically fitted parameters. Although our scheme has a greater computational overhead than the BCA, it is far superior in the low ion energy regime, where the BCA scheme becomes invalid.Comment: 17 pages, 21 figures, 2 tables. See: http://bifrost.lanl.gov/~reed

    Critical disorder effects in Josephson-coupled quasi-one-dimensional superconductors

    Full text link
    Effects of non-magnetic randomness on the critical temperature T_c and diamagnetism are studied in a class of quasi-one dimensional superconductors. The energy of Josephson-coupling between wires is considered to be random, which is typical for dirty organic superconductors. We show that this randomness destroys phase coherence between the wires and T_c vanishes discontinuously when the randomness reaches a critical value. The parallel and transverse components of the penetration depth are found to diverge at different critical temperatures T_c^{(1)} and T_c, which correspond to pair-breaking and phase-coherence breaking. The interplay between disorder and quantum phase fluctuations results in quantum critical behavior at T=0, manifesting itself as a superconducting-normal metal phase transition of first-order at a critical disorder strength.Comment: 4 pages, 2 figure

    Polaron and bipolaron dispersion curves in one dimension for intermediate coupling

    Full text link
    Bipolaron energies are calculated as a function of wave vector by a variational method of Gurari appropriate for weak or intermediate coupling strengths, for a model with electron-phonon interactions independent of phonon wave vectors and a short-ranged Coulomb repulsion. It is assumed that the bare electrons have a constant effective mass. A two-parameter trial function is taken for the relative motion of the two electrons in the bipolaron. Energies of bipolarons are compared with those of two single polarons as a function of wave vector for various parameter values. Results for effective masses at the zone center are also obtained. Comparison is made with data of other authors for bipolarons in the Hubbard-Holstein model, which differs mainly from the present model in that it has a tight-binding band structure for the bare electrons.Comment: 11 pages including six figures. Physical Review B, to be publishe

    Absolute instruments and perfect imaging in geometrical optics

    Full text link
    We investigate imaging by spherically symmetric absolute instruments that provide perfect imaging in the sense of geometrical optics. We derive a number of properties of such devices, present a general method for designing them and use this method to propose several new absolute instruments, in particular a lens providing a stigmatic image of an optically homogeneous region and having a moderate refractive index range.Comment: 20 pages, 9 image

    Power laws in a 2-leg ladder of interacting spinless fermions

    Full text link
    We use the Density-Matrix Renormalization Group to study the single-particle and two-particle correlation functions of spinless fermions in the ground state of a quarter-filled ladder. This ladder consists of two chains having an in-chain extended Coulomb interaction reaching to third neighbor and coupled by inter-chain hopping. Within our short numerical coherence lengths, typically reaching ten to twenty sites, we find a strong renormalization of the interchain hopping and the existence of a dimensional crossover at smaller interactions. We also find power exponents for single-particle hopping and interchain polarization consistent with the single chain. The total charge correlation function has a larger power exponent and shows signs of a crossover from incoherent fermion hopping to coherent particle-hole pair motion between chains. There are no significant excitation energies.Comment: RevTex 4 file, 10 pages, 10 eps figure
    • …
    corecore