327 research outputs found
Recommended from our members
First CRDS-measurements of water vapour continuum in the 940nm absorption band
Measurements of near-infrared water vapour continuum using continuous wave cavity ring down spectroscopy (cw-
CRDS) have been performed at around 10611.6 and 10685:2 cm1. The continuum absorption coefficients for N2-
broadening have been determined for two temperatures and wavenumbers.
These results represent the first near-IR continuum laboratory data determined within the complex spectral environment in the 940nm water vapour band and are in reasonable agreement with simulations using the semiempirical CKD formulation
Optical models of the molecular atmosphere
The use of optical and laser methods for performing atmospheric investigations has stimulated the development of the optical models of the atmosphere. The principles of constructing the optical models of molecular atmosphere for radiation with different spectral composition (wideband, narrowband, and monochromatic) are considered in the case of linear and nonlinear absorptions. The example of the development of a system which provides for the modeling of the processes of optical-wave energy transfer in the atmosphere is presented. Its physical foundations, structure, programming software, and functioning were considered
Disorder-driven superconductor-normal metal phase transition in quasi-one-dimensional organic conductors
Effects of non-magnetic disorder on the critical temperature T_c and on
diamagnetism of quasi-one-dimensional superconductors are reported. The energy
of Josephson-coupling between wires is considered to be random, which is
typical for dirty organic superconductors. We show that this randomness
destroys phase coherence between wires and that T_c vanishes discontinuously at
a critical disorder-strength. The parallel and transverse components of the
penetration-depth are evaluated. They diverge at different critical
temperatures T_c^{(1)} and T_c, which correspond to pair-breaking and
phase-coherence breaking respectively. The interplay between disorder and
quantum phase fluctuations is shown to result in quantum critical behavior at
T=0, which manifests itself as a superconducting-normal metal phase transition
of first-order at a critical disorder strength.Comment: 12 pages, 3 figure
Influence of Collision Cascade Statistics on Pattern Formation of Ion-Sputtered Surfaces
Theoretical continuum models that describe the formation of patterns on
surfaces of targets undergoing ion-beam sputtering, are based on Sigmund's
formula, which describes the spatial distribution of the energy deposited by
the ion. For small angles of incidence and amorphous or polycrystalline
materials, this description seems to be suitable, and leads to the classic BH
morphological theory [R.M. Bradley and J.M.E. Harper, J. Vac. Sci. Technol. A
6, 2390 (1988)]. Here we study the sputtering of Cu crystals by means of
numerical simulations under the binary-collision approximation. We observe
significant deviations from Sigmund's energy distribution. In particular, the
distribution that best fits our simulations has a minimum near the position
where the ion penetrates the surface, and the decay of energy deposition with
distance to ion trajectory is exponential rather than Gaussian. We provide a
modified continuum theory which takes these effects into account and explores
the implications of the modified energy distribution for the surface
morphology. In marked contrast with BH's theory, the dependence of the
sputtering yield with the angle of incidence is non-monotonous, with a maximum
for non-grazing incidence angles.Comment: 12 pages, 13 figures, RevTe
An Efficient Molecular Dynamics Scheme for the Calculation of Dopant Profiles due to Ion Implantation
We present a highly efficient molecular dynamics scheme for calculating the
concentration depth profile of dopants in ion irradiated materials. The scheme
incorporates several methods for reducing the computational overhead, plus a
rare event algorithm that allows statistically reliable results to be obtained
over a range of several orders of magnitude in the dopant concentration.
We give examples of using this scheme for calculating concentration profiles
of dopants in crystalline silicon. Here we can predict the experimental profile
over five orders of magnitude for both channeling and non-channeling implants
at energies up to 100s of keV.
The scheme has advantages over binary collision approximation (BCA)
simulations, in that it does not rely on a large set of empirically fitted
parameters. Although our scheme has a greater computational overhead than the
BCA, it is far superior in the low ion energy regime, where the BCA scheme
becomes invalid.Comment: 17 pages, 21 figures, 2 tables. See: http://bifrost.lanl.gov/~reed
Critical disorder effects in Josephson-coupled quasi-one-dimensional superconductors
Effects of non-magnetic randomness on the critical temperature T_c and
diamagnetism are studied in a class of quasi-one dimensional superconductors.
The energy of Josephson-coupling between wires is considered to be random,
which is typical for dirty organic superconductors. We show that this
randomness destroys phase coherence between the wires and T_c vanishes
discontinuously when the randomness reaches a critical value. The parallel and
transverse components of the penetration depth are found to diverge at
different critical temperatures T_c^{(1)} and T_c, which correspond to
pair-breaking and phase-coherence breaking. The interplay between disorder and
quantum phase fluctuations results in quantum critical behavior at T=0,
manifesting itself as a superconducting-normal metal phase transition of
first-order at a critical disorder strength.Comment: 4 pages, 2 figure
Polaron and bipolaron dispersion curves in one dimension for intermediate coupling
Bipolaron energies are calculated as a function of wave vector by a
variational method of Gurari appropriate for weak or intermediate coupling
strengths, for a model with electron-phonon interactions independent of phonon
wave vectors and a short-ranged Coulomb repulsion. It is assumed that the bare
electrons have a constant effective mass. A two-parameter trial function is
taken for the relative motion of the two electrons in the bipolaron. Energies
of bipolarons are compared with those of two single polarons as a function of
wave vector for various parameter values. Results for effective masses at the
zone center are also obtained. Comparison is made with data of other authors
for bipolarons in the Hubbard-Holstein model, which differs mainly from the
present model in that it has a tight-binding band structure for the bare
electrons.Comment: 11 pages including six figures. Physical Review B, to be publishe
Absolute instruments and perfect imaging in geometrical optics
We investigate imaging by spherically symmetric absolute instruments that
provide perfect imaging in the sense of geometrical optics. We derive a number
of properties of such devices, present a general method for designing them and
use this method to propose several new absolute instruments, in particular a
lens providing a stigmatic image of an optically homogeneous region and having
a moderate refractive index range.Comment: 20 pages, 9 image
Power laws in a 2-leg ladder of interacting spinless fermions
We use the Density-Matrix Renormalization Group to study the single-particle
and two-particle correlation functions of spinless fermions in the ground state
of a quarter-filled ladder. This ladder consists of two chains having an
in-chain extended Coulomb interaction reaching to third neighbor and coupled by
inter-chain hopping. Within our short numerical coherence lengths, typically
reaching ten to twenty sites, we find a strong renormalization of the
interchain hopping and the existence of a dimensional crossover at smaller
interactions. We also find power exponents for single-particle hopping and
interchain polarization consistent with the single chain. The total charge
correlation function has a larger power exponent and shows signs of a crossover
from incoherent fermion hopping to coherent particle-hole pair motion between
chains. There are no significant excitation energies.Comment: RevTex 4 file, 10 pages, 10 eps figure
- …