242 research outputs found

    Effect of viscosity on droplet-droplet collisional interaction

    Get PDF
    A complete knowledge of the effect of droplet viscosity on droplet-droplet collision outcomes is essential for industrial processes such as spray drying. When droplets with dispersed solids are dried, the apparent viscosity of the dispersed phase increases by many orders of magnitude, which drastically changes the outcome of a droplet-droplet collision. However, the effect of viscosity on the droplet collision regime boundaries demarcating coalescence and reflexive and stretching separation is still not entirely understood and a general model for collision outcome boundaries is not available. In this work, the effect of viscosity on the droplet-droplet collision outcome is studied using direct numerical simulations employing the volume of fluid method. The role of viscous energy dissipation is analysed in collisions of droplets with different sizes and different physical properties. From the simulations results, a general phenomenological model depending on the capillary number (Ca, accounting for viscosity), the impact parameter (B), the Weber number (We), and the size ratio (Δ) is proposed

    Ultrasound-guided hook-wire localization for surgical excision of non-palpable superficial inguinal lymph nodes in dogs: A pilot study

    Get PDF
    The evaluation of loco-regional lymph nodes (LN) plays an important prognostic role and assists the clinical decision making in canine cancer patients. Excision of non-palpable LN can be challenging. The aim of the study was to evaluate surgical time, successful excision rate and surgical complications associated with the use of an ultrasound-guided hook-wire (UGHW) LN localization method for non-palpable superficial inguinal LN (SILN) in dogs. Dogs that presented for excision of non-palpable SILN, performed with the aid of an UGHW placement, were enrolled. Information including signalment, SILN width, UGHW placement and surgical procedure time, hook-wire position, successful excision and intra-and post-operative complications were reviewed. Seventeen dogs were enrolled. Median LN width was 3 mm (range 2–11). Median time of preoperative UGHW placement and surgical LN excision was 8 min and 15 min, respectively. Successful SILN excision was achieved in all cases. Two minor intra-operative (hook migration and wire fragmentation) and one minor post-operative complications (seroma) were observed. No major intraoperative or post-operative complications occurred. The UGHW LN localization method is safe and effective and may allow a high rate of successful SILN excisions in dogs. This method has the potential to facilitate LN excision for other superficial LN locations

    On the formation of dendritic iron from alkaline electrochemical reduction of iron oxide prepared for metal fuel applications

    Get PDF
    Low-temperature electrochemical reduction (electroreduction) of iron oxides is a promising alternative to the conventional methods for iron production due to its CO2-free operation and relatively low energy consumption. In this work, we demonstrate a novel approach for electrochemical iron production by promoting the formation of dendritic structures during iron electrodeposition, which facilitates the easy harvesting of deposits in powder form. Experiments were conducted using a single pair of parallel plate electrodes, immersed in a mixture of hematite (Fe2O3) powder and aqueous alkaline (NaOH) slurry. The effects of current density, Fe2O3 mass fraction, temperature, and powder size on current efficiency and deposit morphology are investigated. A large quantity of dendritic iron structures is observed when experiments are carried out without stirring and/or applying heat from a heating plate. This condition suggests temperature and (ion/species) concentration gradients in the system. The dendrites are mainly deposited on the cathode's sides, corners, and edges. Different deposits and dendritic structures (compact layer deposit, moss-like deposit, deposit with whisker-like dendrites, and deposit with crystal-like dendrites) are observed as operating conditions change. Overall, a cathodic deposition of metallic iron with a high Faradaic efficiency (≥90 %) is successfully accomplished. The present findings provide new insights into the production of electrolytic iron powder and its future use as a carbon neutral and sustainable fuel/energy carrier

    Electrochemical Reduction of Iron Oxide - Produced from Iron Combustion - for the Valorization of Iron Fuel Cycle

    Get PDF
    Iron is a prospective candidate for energy carriers in the energy transition era with high energy density. In this concept, energy is released by the combustion of iron powder whilst the solid product - iron oxide - can be collected and reduced back to metallic iron, forming a recyclable iron fuel cycle. The electrochemical technique is considered to be a suitable reduction method as it has attractive aspects including low electric energy consumption, low temperature, direct usage of renewable energy, and a short process chain. In this study, the performance of iron electrodeposition is investigated using an electrolysis cell containing a suspension of micron-sized combusted iron powder in aqueous NaOH (50%wt, 18 M) at a temperature of 110C. The parallel plate electrolyzer used in these experiments consists of a stainless-steel plate (cathode) and a nickel gauze (anode). The effects imposed by varying current density, iron oxide composition, and iron oxide particle diameter on Faradaic efficiency and reduced iron yield are evaluated. Additional experiments using a rotating disc electrode (RDE) are also conducted to determine the system's diffusion coefficient under different operating conditions. Generally, cathodic deposition of metallic iron is successfully achieved, and the morphology of the deposited iron depends on the operation conditions including the current density and heterogeneity of the flow system. The obtained results open new perspectives for efficient and cost-effective iron production/regeneration

    Systems and methods for continuous electrolytic production of metals

    Get PDF
    An electrochemical cell for converting metal salt or metal oxide to metal comprises a) a mixture comprising an electrolyte and metal salt or metal oxide; b) an anode submerged in the mixture; c) a cathode partially submerged in the mixture and moveable along a closed loop path; and d) a harvester disposed at an exposed portion of the cathode outside of the mixture, wherein an electrical charge supplied to the electrochemical cell reduces the metal salt or metal oxide to metal at and disposed onto the cathode, and wherein the harvester removes the metal from the exposed portion of the cathode. Methods and systems for converting metal salt or metal oxide to metal are also disclosed including continuous methods and systems

    Experimental and theoretical study of single iron particle combustion under low-oxygen dilution conditions

    Get PDF
    In the present study, a novel in situ particle sizing approach is proposed and used to measure the characteristic timescales of micron-sized iron particle combustion under low-oxygen (10–17 vol%) dilution conditions. The particle size is determined by probing the light emission intensity of a burning particle during melting, which is proportional to the cross-section area of the particle projected to the camera. Detailed descriptions of the calibration, validation, and characterization of the experimental method are elaborated. With systematic measurements, we obtain one-to-one correlations between combustion timescales and single particle diameters at various diluted oxygen concentrations. Furthermore, we formally derive a theoretical model for heterogeneous combustion of growing (iron) particles in the diffusion-limited regime. The model suggests that the diffusion-limited burn time scales with the initial particle diameter squared (i.e., a new, generalized d2-law). Owing to accounting for the particle growth, the newly derived model suggests a significantly (1.66 times) shorter combustion duration compared to the conventional d2-law for shrinking particle combustion. It turns out that the new model agrees well with the experiment. This agreement also suggests that under low-oxygen dilution conditions, the combustion regime of iron particles during the intensive burning stage (i.e., from ignition to the peak particle temperature) is limited by external oxygen diffusion.</p
    • …
    corecore