1,477 research outputs found

    Two-Stage Kondo Effect and Kondo Box Level Spectroscopy in a Carbon Nanotube

    Full text link
    The concept of the "Kondo box" describes a single spin, antiferromagnetically coupled to a quantum dot with a finite level spacing. Here, a Kondo box is formed in a carbon nanotube interacting with a localized electron. We investigate the spins of its first few eigenstates and compare them to a recent theory. In an 'open' Kondo-box, strongly coupled to the leads, we observe a non-monotonic temperature dependence of the nanotube conductance, which results from a competition between the Kondo-box singlet and the 'conventional' Kondo state that couples the nanotube to the leads.Comment: 5 pages, 3 figure

    The Dynamical Masses, Densities, and Star Formation Scaling Relations of Lyman Alpha Galaxies

    Full text link
    We present the first dynamical mass measurements for Lyman alpha galaxies at high redshift, based on velocity dispersion measurements from rest-frame optical emission lines and size measurements from HST imaging, for a sample of nine galaxies drawn from four surveys. These measurements enable us to study the nature of Lyman alpha galaxies in the context of galaxy scaling relations. The resulting dynamical masses range from 1e9 to 1e10 solar masses. We also fit stellar population models to our sample, and use them to plot the Lyman alpha sample on a stellar mass vs. line width relation. Overall, the Lyman alpha galaxies follow well the scaling relation established by observing star forming galaxies at lower redshift (and without regard for Lyman alpha emission), though in 1/3 of the Lyman alpha galaxies, lower-mass fits are also acceptable. In all cases, the dynamical masses agree with established stellarmass-linewidth relation. Using the dynamical masses as an upper limit on gas mass, we show that Lyman alpha galaxies resemble starbursts (rather than "normal" galaxies) in the relation between gas mass surface density and star formation activity, in spite of relatively modest star formation rates. Finally, we examine the mass densities of these galaxies, and show that their future evolution likely requires dissipational ("wet") merging. In short, we find that Lyman alpha galaxies are low mass cousins of larger starbursts.Comment: Submitted to The Astrophysical Journal. 23 pp including three figures and four table

    The nature of z ~ 2.3 Lyman-alpha emitters

    Full text link
    We study the multi-wavelength properties of a set of 171 Ly-alpha emitting candidates at redshift z = 2.25 found in the COSMOS field, with the aim of understanding the underlying stellar populations in the galaxies. We especially seek to understand what the dust contents, ages and stellar masses of the galaxies are, and how they relate to similar properties of Ly-alpha emitters at other redshifts. The candidates here are shown to have different properties from those of Ly-alpha emitters found at higher redshift, by fitting the spectral energy distributions (SEDs) using a Monte-Carlo Markov-Chain technique and including nebular emission in the spectra. The stellar masses, and possibly the dust contents, are higher, with stellar masses in the range log M_* = 8.5 - 11.0 M_sun and A_V = 0.0 - 2.5 mag. Young population ages are well constrained, but the ages of older populations are typically unconstrained. In 15% of the galaxies only a single, young population of stars is observed. We show that the Ly-alpha fluxes of the best fit galaxies are correlated with their dust properties, with higher dust extinction in Ly-alpha faint galaxies. Testing for whether results derived from a light-weighted stack of objects correlate to those found when fitting individual objects we see that stellar masses are robust to stacking, but ages and especially dust extinctions are derived incorrectly from stacks. We conclude that the stellar properties of Ly-alpha emitters at z = 2.25 are different from those at higher redshift and that they are diverse. Ly-alpha selection appears to be tracing systematically different galaxies at different redshifts.Comment: 15 pages, 11 figures, 8 tables, accepted in A&A. Table 6 available in full from the author

    On the Cooling of Electrons in a Silicon Inversion Layer

    Full text link
    The cooling of two-dimensional electrons in silicon-metal-oxide semiconductor field effect transistors is studied experimentally. Cooling to the lattice is found to be more effective than expected from the bulk electron-phonon coupling in silicon. Unexpectedly, the extracted heat transfer rate to phonons at low temperatures depends cubically on electron temperature, suggesting that piezoelectric coupling (absent in bulk silicon) dominates over deformation potential. According to our findings, at 100 mK, electrons farther than 0.1 mm from the contacts are mostly cooled by phonons. Using long devices and low excitation voltage we measure electron resistivity down to 100 mK and find that some of the "metallic" curves, reported earlier, turn insulating below about 300 mK. This finding renders the definition of the claimed 2D metal-insulator transition questionable. Previous low temperature measurements in silicon devices are analyzed and thumb rules for evaluating their electron temperatures are provided.Comment: 5 pages, 4 figures. Discussion corrected and a few references adde

    Quantum creep and variable range hopping of one-dimensional interacting electrons

    Full text link
    The variable range hopping results for noninteracting electrons of Mott and Shklovskii are generalized to 1D disordered charge density waves and Luttinger liquids using an instanton approach. Following a recent paper by Nattermann, Giamarchi and Le Doussal [Phys. Rev. Lett. {\bf 91}, 56603 (2003)] we calculate the quantum creep of charges at zero temperature and the linear conductivity at finite temperatures for these systems. The hopping conductivity for the short range interacting electrons acquires the same form as for noninteracting particles if the one-particle density of states is replaced by the compressibility. In the present paper we extend the calculation to dissipative systems and give a discussion of the physics after the particles materialize behind the tunneling barrier. It turns out that dissipation is crucial for tunneling to happen. Contrary to pure systems the new metastable state does not propagate through the system but is restricted to a region of the size of the tunneling region. This corresponds to the hopping of an integer number of charges over a finite distance. A global current results only if tunneling events fill the whole sample. We argue that rare events of extra low tunneling probability are not relevant for realistic systems of finite length. Finally we show that an additional Coulomb interaction only leads to small logarithmic corrections.Comment: 15 pages, 3 figures; references adde
    • …
    corecore