264 research outputs found
Uniaxial and biaxial soft deformations of nematic elastomers
We give a geometric interpretation of the soft elastic deformation modes of
nematic elastomers, with explicit examples, for both uniaxial and biaxial
nematic order. We show the importance of body rotations in this non-classical
elasticity and how the invariance under rotations of the reference and target
states gives soft elasticity (the Golubovic and Lubensky theorem). The role of
rotations makes the Polar Decomposition Theorem vital for decomposing general
deformations into body rotations and symmetric strains. The role of the square
roots of tensors is discussed in this context and that of finding explicit
forms for soft deformations (the approach of Olmsted).Comment: 10 pages, 10 figures, RevTex, AmsTe
Symmetries and Elasticity of Nematic Gels
A nematic liquid-crystal gel is a macroscopically homogeneous elastic medium
with the rotational symmetry of a nematic liquid crystal. In this paper, we
develop a general approach to the study of these gels that incorporates all
underlying symmetries. After reviewing traditional elasticity and clarifying
the role of broken rotational symmetries in both the reference space of points
in the undistorted medium and the target space into which these points are
mapped, we explore the unusual properties of nematic gels from a number of
perspectives. We show how symmetries of nematic gels formed via spontaneous
symmetry breaking from an isotropic gel enforce soft elastic response
characterized by the vanishing of a shear modulus and the vanishing of stress
up to a critical value of strain along certain directions. We also study the
phase transition from isotropic to nematic gels. In addition to being fully
consistent with approaches to nematic gels based on rubber elasticity, our
description has the important advantages of being independent of a microscopic
model, of emphasizing and clarifying the role of broken symmetries in
determining elastic response, and of permitting easy incorporation of spatial
variations, thermal fluctuations, and gel heterogeneity, thereby allowing a
full statistical-mechanical treatment of these novel materials.Comment: 21 pages, 4 eps figure
Stereo-selective swelling of imprinted cholesteric networks
Molecular chirality, and the chiral symmetry breaking of resulting
macroscopic phases, can be topologically imprinted and manipulated by
crosslinking and swelling of polymer networks. We present a new experimental
approach to stereo-specific separation of chiral isomers by using a cholesteric
elastomer in which a helical director distribution has been topological
imprinted by crosslinking. This makes the material unusual in that is has a
strong phase chirality, but no molecular chirality at all; we study the nature
and parameters controlling the twist-untwist transition. Adding a racemic
mixture to the imprinted network results in selective swelling by only the
component of ``correct'' handedness. We investigate the capacity of demixing in
a racemic environment, which depends on network parameters and the underlying
nematic order
Anomalous elasticity of nematic elastomers
We study the anomalous elasticity of nematic elastomers by employing the
powers of renormalized field theory. Using general arguments of symmetry and
relevance, we introduce a minimal Landau-Ginzburg-Wilson elastic energy for
nematic elastomers. Performing a diagrammatic low temperature expansion, we
analyze the fluctuations of the displacement fields at and below the upper
critical dimension 3. Our analysis reveals an anomaly of certain elastic moduli
in the sense that they depend on the length scale. In this dependence
is logarithmic and below it is of power law type with anomalous scaling
exponents. One of the 4 relevant shear moduli vanishes at long length scales
whereas the only relevant bending modulus diverges.Comment: 4 page
Untwisting of a cholesteric elastomer by a mechanical field
A mechanical strain field applied to a monodomain cholesteric elastomer will
unwind the helical director distribution. There is an analogy with the
classical problem of an electric field applied to a cholesteric liquid crystal,
but with important differences. Frank elasticity is of minor importance unless
the gel is very weak. The interplay is between director anchoring to the rubber
elastic matrix and the external mechanical field. Stretching perpendicular to
the helix axis induces the uniform unwound state via the elimination of sharp,
pinned twist walls above a critical strain. Unwinding through conical director
states occurs when the elastomer is stretched along the helical axis.Comment: 4 pages, RevTeX 3 style, 3 EPS figure
Photonic band structure of highly deformable, self-assembling systems
We calculate the photonic band structure at normal incidence of highly
deformable, self-assembling systems - cholesteric elastomers subjected to
external stress. Cholesterics display brilliant reflection and lasing owing to
gaps in their photonic band structure. The band structure of cholesteric
elastomers varies sensitively with strain, showing new gaps opening up and
shifting in frequency. A novel prediction of a total band gap is made, and is
expected to occur in the vicinity of the previously observed de Vries bandgap,
which is only for one polarisation
Electro-Mechanical Fredericks Effects in Nematic Gels
The solid nematic equivalent of the Fredericks transition is found to depend
on a critical field rather than a critical voltage as in the classical case.
This arises because director anchoring is principally to the solid rubbery
matrix of the nematic gel rather than to the sample surfaces. Moreover, above
the threshold field, we find a competition between quartic (soft) and
conventional harmonic elasticity which dictates the director response. By
including a small degree of initial director misorientation, the calculated
field variation of optical anisotropy agrees well with the conoscopy
measurements of Chang et al (Phys.Rev.E56, 595, 1997) of the electro-optical
response of nematic gels.Comment: Latex (revtex style), 5 EPS figures, submitted to PRE, corrections to
discussion of fig.3, cosmetic change
Fluctuating Nematic Elastomer Membranes: a New Universality Class
We study the flat phase of nematic elastomer membranes with rotational
symmetry spontaneously broken by in-plane nematic order. Such state is
characterized by a vanishing elastic modulus for simple shear and soft
transverse phonons. At harmonic level, in-plane orientational (nematic) order
is stable to thermal fluctuations, that lead to short-range in-plane
translational (phonon) correlations. To treat thermal fluctuations and relevant
elastic nonlinearities, we introduce two generalizations of two-dimensional
membranes in a three dimensional space to arbitrary D-dimensional membranes
embedded in a d-dimensional space, and analyze their anomalous elasticities in
an expansion about D=4. We find a new stable fixed point, that controls
long-scale properties of nematic elastomer membranes. It is characterized by
singular in-plane elastic moduli that vanish as a power-law eta_lambda=4-D of a
relevant inverse length scale (e.g., wavevector) and a finite bending rigidity.
Our predictions are asymptotically exact near 4 dimensions.Comment: 18 pages, 4 eps figures. submitted to PR
Oscillatory Shear Flow-Induced Alignment of Lamellar Melts of Hydrogen-Bonded Comb Copolymer Supramolecules
In this work we present the orientational behavior of comb copolymer-like supramolecules P4VP(PDP)1.0, obtained by hydrogen bonding between poly(4-vinylpyridine) and pentadecylphenol, during large-amplitude oscillatory shear flow experiments over a broad range of frequencies (0.001-10 Hz). The alignment diagram, presenting the macroscopic alignment in T/TODT vs ω/ωc, contains three regions of parallel alignment separated by a region of perpendicular alignment. For our material, the order-disorder temperature TODT = 67 °C and ωc, the frequency above which the distortion of the chain conformation dominates the materials’ viscoelasticity, is around 0.1 Hz at 61 °C. For the first time flipping from a pure transverse alignment via biaxial transverse/perpendicular alignment to a perpendicular alignment as a function of the strain amplitude was found.
- …