46 research outputs found
Recommended from our members
Human Sialic acid O-acetyl esterase (SIAE) – mediated changes in sensitivity to etoposide in a medulloblastoma cell line
Medulloblastoma (MB), the most common malignant paediatric brain tumour occurs in the cerebellum. Advances in molecular genomics have led to the identification of defined subgroups which are associated with distinct clinical prognoses. Despite this classification, standard therapies for all subgroups often leave children with life-long neurological deficits. New therapeutic approaches are therefore urgently needed to reduce current treatment toxicity and increase survival for patients. GD3 is a well-studied ganglioside which is known to have roles in the development of the cerebellum. Post-partum GD3 is not highly expressed in the brain. In some cancers however GD3 is highly expressed. In MB cells GD3 is largely acetylated to GD3A. GD3 is pro-apoptotic but GD3A can protect cells from apoptosis. Presence of these gangliosides has previously been shown to correlate with resistance to chemotherapy. Here we show that the GD3 acetylation pathway is dysregulated in MB and as a proof-of-principle we show that increased GD3 expression sensitises an MB cell line to etoposide
Novel Report of Expression and Function of CD97 in Malignant Gliomas: Correlation With Wilms Tumor 1 Expression and Glioma Cell Invasiveness Laboratory investigation
Object. The Wilms tumor 1 (WT1) protein—a developmentally regulated transcription factor—is aberrantly expressed in gliomas and promotes their malignant phenotype. However, little is known about the molecular allies that help it mediate its oncogenic functions in glioma cells.
Methods. The authors used short interfering RNA (siRNA) to suppress WT1 expression in glioblastoma (GBM) cells and evaluated the effect of this on GBM cell invasiveness. Gene expression analysis was then used to identify the candidate genes that were altered as a result of WT1 silencing. One candidate target, CD97, was then selected for further investigation into its role by suppressing its expression using siRNA silencing, followed by proliferation and invasion assays.
Results. WT1 levels were reliably and reproducibly suppressed by siRNA application. This resulted in a significant decrease in cellular invasiveness. Microarray analyses identified the gene products that were consistently downregulated (27) and upregulated (11) with WT1 silencing. Of these, CD97 expression was consistently suppressed across the 3 different GBM cell lines studied and was found on further investigation to significantly impact GBM cell invasiveness.
Conclusions. Although CD97 expression in gliomas has not been described previously, we conclude that the possible upregulation of CD97 mediated by WT1 promotes cellular invasiveness—one of the most characteristic and challenging aspects of glial tumor cells. Further studies are needed to clarify the nature of this regulation and its impact, as CD97 could represent a novel target for antiglioma therapies
Novel Report of Expression and Function of CD97 in Malignant Gliomas: Correlation With Wilms Tumor 1 Expression and Glioma Cell Invasiveness Laboratory investigation
Object. The Wilms tumor 1 (WT1) protein—a developmentally regulated transcription factor—is aberrantly expressed in gliomas and promotes their malignant phenotype. However, little is known about the molecular allies that help it mediate its oncogenic functions in glioma cells.
Methods. The authors used short interfering RNA (siRNA) to suppress WT1 expression in glioblastoma (GBM) cells and evaluated the effect of this on GBM cell invasiveness. Gene expression analysis was then used to identify the candidate genes that were altered as a result of WT1 silencing. One candidate target, CD97, was then selected for further investigation into its role by suppressing its expression using siRNA silencing, followed by proliferation and invasion assays.
Results. WT1 levels were reliably and reproducibly suppressed by siRNA application. This resulted in a significant decrease in cellular invasiveness. Microarray analyses identified the gene products that were consistently downregulated (27) and upregulated (11) with WT1 silencing. Of these, CD97 expression was consistently suppressed across the 3 different GBM cell lines studied and was found on further investigation to significantly impact GBM cell invasiveness.
Conclusions. Although CD97 expression in gliomas has not been described previously, we conclude that the possible upregulation of CD97 mediated by WT1 promotes cellular invasiveness—one of the most characteristic and challenging aspects of glial tumor cells. Further studies are needed to clarify the nature of this regulation and its impact, as CD97 could represent a novel target for antiglioma therapies
The Long Non-Coding RNA H19 Drives the Proliferation of Diffuse Intrinsic Pontine Glioma with H3K27 Mutation
Diffuse intrinsic pontine glioma (DIPG) is an incurable paediatric malignancy. Identifying the molecular drivers of DIPG progression is of the utmost importance. Long non-coding RNAs (lncRNAs) represent a large family of disease- and tissue-specific transcripts, whose functions have not yet been elucidated in DIPG. Herein, we studied the oncogenic role of the development-associated H19 lncRNA in DIPG. Bioinformatic analyses of clinical datasets were used to measure the expression of H19 lncRNA in paediatric high-grade gliomas (pedHGGs). The expression and sub-cellular location of H19 lncRNA were validated in DIPG cell lines. Locked nucleic acid antisense oligonucleotides were designed to test the function of H19 in DIPG cells. We found that H19 expression was higher in DIPG vs. normal brain tissue and other pedHGGs. H19 knockdown resulted in decreased cell proliferation and survival in DIPG cells. Mechanistically, H19 buffers let-7 microRNAs, resulting in the up-regulation of oncogenic let-7 target (e.g., SULF2 and OSMR). H19 is the first functionally characterized lncRNA in DIPG and a promising therapeutic candidate for treating this incurable cancer
Recommended from our members
Matrix metalloproteinase expression in the olfactory epithelium
The olfactory epithelium contains neuronal progenitor cells capable of continuous neurogenesis and is a unique model for studying neural degeneration, regeneration, axon outgrowth and recovery from injury. Matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs), have been implicated in cell turnover, development, migration, and metastatic processes. We used Western blot and immunohistochemistry to determine whether MMP-2 and associated proteins TIMP-2 and membrane type 1 matrix metalloproteinase (MT1-MMP) are present in the olfactory epithelium of mice. We found MMP-2 expression localized to the olfactory basal cells and immature neurons. After injury-induced neural degeneration, MMP-2 and MT1-MMP levels decreased while TIMP-2 levels increased. However, following 35 days of neurogenesis and cell replacement TIMP-2 and MT1-MMP returned to control levels. The results show a correlation between MMP and TIMP levels and the stages of neural degeneration, regeneration and recovery of the olfactory epithelium following injury