83 research outputs found

    Signatures of natural selection in a foundation tree along Mediterranean climatic gradients

    Get PDF
    Temperature and precipitation regimes are rapidly changing, resulting in forest dieback and extinction events, particularly in Mediterranean-type climates (MTC). Forest management that enhance forests’ resilience is urgently required, however adaptation to climates in heterogeneous landscapes with multiple selection pressures is complex. For widespread trees in MTC we hypothesized that: patterns of local adaptation are associated with climate; precipitation is a stronger factor of adaptation than temperature; functionally related genes show similar signatures of adaptation; and adaptive variants are independently sorting across the landscape. We sampled 28 populations across the geographic distribution of Eucalyptus marginata (jarrah), in South-west Western Australia, and obtained 13,534 independent single nucleotide polymorphic (SNP) markers across the genome. Three genotype-association analyses that employ different ways of correcting population structure were used to identify putatively adapted SNPs associated with independent climate variables. While overall levels of population differentiation were low (FST = 0.04), environmental association analyses found a total of 2336 unique SNPs associated with temperature and precipitation variables, with 1440 SNPs annotated to genic regions. Considerable allelic turnover was identified for SNPs associated with temperature seasonality and mean precipitation of the warmest quarter, suggesting that both temperature and precipitation are important factors in adaptation. SNPs with similar gene functions had analogous allelic turnover along climate gradients, while SNPs among temperature and precipitation variables had uncorrelated patterns of adaptation. These contrasting patterns provide evidence that there may be standing genomic variation adapted to current climate gradients, providing the basis for adaptive management strategies to bolster forest resilience in the future

    Reduction of the Three Dimensional Schrodinger Equation for Multilayered Films

    Full text link
    In this paper, we present a method for reducing the three dimensional Schrodinger equation to study confined metallic states, such as quantum well states, in a multilayer film geometry. While discussing some approximations that are employed when dealing with the three dimensionality of the problem, we derive a one dimensional equation suitable for studying such states using an envelope function approach. Some applications to the Cu/Co multilayer system with regard to spin tunneling/rotations and angle resolved photoemission are discussed.Comment: 14 pages, 1 figur

    On a class of 4D Kahler bases and AdS_5 supersymmetric Black Holes

    Get PDF
    We construct a class of toric Kahler manifolds, M_4, of real dimension four, a subset of which corresponds to the Kahler bases of all known 5D asymptotically AdS_5 supersymmetric black-holes. In a certain limit, these Kahler spaces take the form of cones over Sasaki spaces, which, in turn, are fibrations over toric manifolds of real dimension two. The metric on M_4 is completely determined by a single function H(x), which is the conformal factor of the two dimensional space. We study the solutions of minimal five dimensional gauged supergravity having this class of Kahler spaces as base and show that in order to generate a five dimensional solution H(x) must obey a simple sixth order differential equation. We discuss the solutions in detail, which include all known asymptotically AdS_5 black holes as well as other spacetimes with non-compact horizons. Moreover we find an infinite number of supersymmetric deformations of these spacetimes with less spatial isometries than the base space. These deformations vanish at the horizon, but become relevant asymptotically.Comment: 34 pages, 3 figures. v2: formula (8.35) and other minor typos corrected; references added; accepted for publication in JHE

    Light‐limited photosynthesis under energy‐saving film decreases eggplant yield

    Get PDF
    Glasshouse films with adjustable light transmittance and energy‐efficient designs have the potential to reduce (up to 80%) the high energy cost for greenhouse horticulture operations. Whether these films compromise the quantity and quality of light transmission for photosynthesis and crop yield remains unclear. A “Smart Glass” film ULR‐80 (SG) was applied to a high‐tech greenhouse horticulture facility, and two experimental trials were conducted by growing eggplant (Solanum melongena) using commercial vertical cultivation and management practices. SG blocked 85% of ultraviolet (UV), 58% of far‐red, and 26% of red light, leading to an overall reduction of 19% in photosynthetically active radiation (PAR, 380–699 nm) and a 25% reduction in total season fruit yield. There was a 53% (season mean) reduction in net short‐wave radiation (radiometer range, 385–2,105 nm upward; 295–2,685 nm downward) that generated a net reduction of 8% in heat load and reduced water and nutrient consumption by 18%, leading to improved energy and resource use efficiency. Eggplant adjusted to the altered SG light environment via decreased maximum light‐saturated photosynthetic rates (Amax) and lower xanthophyll de‐epoxidation state. The shift in light characteristics under SG led to reduced photosynthesis, which may have reduced source (leaf) to sink (fruit) carbon distribution, increased fruit abortion and decreased fruit yield, but did not affect nutritional quality. We conclude that SG increases energy and resource use efficiency, without affecting fruit quality, but the reduction in photosynthesis and eggplant yield is high. The solution is to re‐engineer the SG to increase penetration of UV and PAR, while maintaining blockage of glasshouse heat gain

    Intramuscular EMG-Driven Musculoskeletal Modelling: Towards Implanted Muscle Interfacing in Spinal Cord Injury Patients

    Get PDF
    Objective: Surface EMG-driven modelling has been proposed as a means to control assistive devices by estimating joint torques. Implanted EMG sensors have several advantages over wearable sensors but provide a more localized information on muscle activity, which may impact torque estimates. Here, we tested and compared the use of surface and intramuscular EMG measurements for the estimation of required assistive joint torques using EMG driven modelling. Methods: Four healthy subjects and three incomplete spinal cord injury (SCI) patients performed walking trials at varying speeds. Motion capture marker trajectories, surface and intramuscular EMG, and ground reaction forces were measured concurrently. Subject-specific musculoskeletal models were developed for all subjects, and inverse dynamics analysis was performed for all individual trials. EMG-driven modelling based joint torque estimates were obtained from surface and intramuscular EMG. Results: The correlation between the experimental and predicted joint torques was similar when using intramuscular or surface EMG as input to the EMG-driven modelling estimator in both healthy individuals and patients. Conclusion: We have provided the first comparison of non-invasive and implanted EMG sensors as input signals for torque estimates in healthy individuals and SCI patients. Significance: Implanted EMG sensors have the potential to be used as a reliable input for assistive exoskeleton joint torque actuation.The authors would like to thank Enrique Pérez Rizo, Natalia Comino Suárez and María Isabel Sinovas Alonso for their assistance on the experimental and data acquisition procedure

    Prediction of Pathological Tremor Signals Using Long Short-Term Memory Neural Networks

    Get PDF
    Previous implementations of closed-loop peripheral electrical stimulation (PES) strategies have provided evidence about the effect of the stimulation timing on tremor reduction. However, these strategies have used traditional signal processing techniques that only consider phase prediction and might not model the non-stationary behavior of tremor. Here, we tested the use of long short-term memory (LSTM) neural networks to predict tremor signals using kinematic data recorded from Essential Tremor (ET) patients. A dataset comprising wrist flexion-extension data from 12 ET patients was pre-processed to feed the predictors. A total of 180 models resulting from the combination of network (neurons and layers of the LSTM networks, length of the input sequence and prediction horizon) and training parameters (learning rate) were trained, validated and tested. Predicted tremor signals using LSTM-based models presented high correlation values (from 0.709 to 0.998) with the expected values, with a phase delay between the predicted and real signals below 15 ms, which corresponds approximately to 7.5% of a tremor cycle. The prediction horizon was the parameter with a higher impact on the prediction performance. The proposed LSTM-based models were capable of predicting both phase and amplitude of tremor signals outperforming results from previous studies (32 - 56% decreased phase prediction error compared to the out-of-phase method), which might provide a more robust PES-based closed-loop control applied to PES-based tremor reduction.The authors would like to thank Cristina Montero Pardo for illustrations from Fig. 1 and the patients from Gregorio Marañón Hospital who voluntarily participated in this study

    Adaptations in equine axial movement and muscle activity occur during induced fore- and hindlimb lameness: a kinematic and electromyographic evaluation during in-hand trot

    Get PDF
    Background: The inter-relationship between equine thoracolumbar motion and muscle activation during normal locomotion and lameness is poorly understood. Objective: To compare thoracolumbar and pelvic kinematics and longissimus dorsi (longissimus) activity of trotting horses between baseline and induced forelimb (iFL) and hindlimb (iHL) lameness. Study design: Controlled experimental cross-over study. Methods: Three-dimensional kinematic data from the thoracolumbar vertebrae and pelvis, and bilateral surface electromyography (sEMG) data from longissimus at T14 and L1, were collected synchronously from clinically nonlame horses (n = 8) trotting overground during a baseline evaluation, and during iFL and iHL conditions (2–3/5 AAEP), induced on separate days using a lameness model (modified horseshoe). Motion asymmetry parameters, maximal thoracolumbar flexion/extension and lateral bending angles, and pelvis range of motion (ROM) were calculated from kinematic data. Normalised average rectified value (ARV) and muscle activation onset, offset and activity duration were calculated from sEMG signals. Mixed model analysis and statistical parametric mapping compared discrete and continuous variables between conditions (α = 0.05). Results: Asymmetry parameters reflected the degree of iFL and iHL. Maximal thoracolumbar flexion and pelvis pitch ROM increased significantly following iFL and iHL. During iHL, peak lateral bending increased towards the nonlame side (NLS) and decreased towards the lame side (LS). Longissimus ARV significantly increased bilaterally at T14 and L1 for iHL, but only at LS L1 for iFL. Longissimus activation was significantly delayed on the NLS and precipitated on the LS during iHL, but these clear phasic shifts were not observed in iFL. Main limitations: Findings should be confirmed in clinical cases. Conclusions: Distinctive, significant adaptations in thoracolumbar and pelvic motion and underlying longissimus activity occur during iFL and iHL and are detectable using combined motion capture and sEMG. For iFL, these adaptations occur primarily in a cranio-caudal direction, whereas for iHL, lateral bending and axial rotation are also involved

    Study of Tau-pair Production in Photon-Photon Collisions at LEP and Limits on the Anomalous Electromagnetic Moments of the Tau Lepton

    Full text link
    Tau-pair production in the process e+e- -> e+e-tau+tau- was studied using data collected by the DELPHI experiment at LEP2 during the years 1997 - 2000. The corresponding integrated luminosity is 650 pb^{-1}. The values of the cross-section obtained are found to be in agreement with QED predictions. Limits on the anomalous magnetic and electric dipole moments of the tau lepton are deduced.Comment: 20 pages, 9 figures, Accepted by Eur. Phys. J.

    Energy dependence of Cronin momentum in saturation model for p+Ap+A and A+AA+A collisions

    Full text link
    We calculate s\sqrt{s} dependence of Cronin momentum for p+Ap+A and A+AA+A collisions in saturation model. We show that this dependence is consistent with expectation from formula which was obtained using simple dimentional consideration. This can be used to test validity of saturation model (and distinguish among its variants) and measure xx dependence of saturation momentum from experimental data.Comment: LaTeX2e, 12 pages, 8 figure
    corecore