106 research outputs found

    Housekeeping genes for quantitative expression studies in the three-spined stickleback Gasterosteus aculeatus

    Get PDF
    Background During the last years the quantification of immune response under immunological challenges, e.g. parasitation, has been a major focus of research. In this context, the expression of immune response genes in teleost fish has been surveyed for scientific and commercial purposes. Despite the fact that it was shown in teleostei and other taxa that the gene for beta-actin is not the most stably expressed housekeeping gene (HKG), depending on the tissue and experimental treatment, the gene has been us Results To establish a reliable method for the measurement of immune gene expression in Gasterosteus aculeatus, sequences from the now available genome database and an EST library of the same species were used to select oligonucleotide primers for HKG, in order to perform quantitative reverse-transcription (RT) PCR. The expression stability of ten candidate reference genes was evaluated in three different tissues, and in five parasite treatment groups, using the three algorithms BestKeeper, geNorm and N Conclusion As they were the most stably expressed genes in all tissues examined, we suggest using the genes for the L13a ribosomal binding protein and ubiquitin as alternative or additional reference genes in expression analysis in Gasterosteus aculeatus.

    A Comprehensive Approach to Identify Reliable Reference Gene Candidates to Investigate the Link between Alcoholism and Endocrinology in Sprague-Dawley Rats

    Get PDF
    Gender and hormonal differences are often correlated with alcohol dependence and related complications like addiction and breast cancer. Estrogen (E2) is an important sex hormone because it serves as a key protein involved in organism level signaling pathways. Alcoholism has been reported to affect estrogen receptor signaling; however, identifying the players involved in such multi-faceted syndrome is complex and requires an interdisciplinary approach. In many situations, preliminary investigations included a straight forward, yet informative biotechniques such as gene expression analyses using quantitative real time PCR (qRT-PCR). The validity of qRT-PCR-based conclusions is affected by the choice of reliable internal controls. With this in mind, we compiled a list of 15 commonly used housekeeping genes (HKGs) as potential reference gene candidates in rat biological models. A comprehensive comparison among 5 statistical approaches (geNorm, dCt method, NormFinder, BestKeeper, and RefFinder) was performed to identify the minimal number as well the most stable reference genes required for reliable normalization in experimental rat groups that comprised sham operated (SO), ovariectomized rats in the absence (OVX) or presence of E2 (OVXE2). These rat groups were subdivided into subgroups that received alcohol in liquid diet or isocalroic control liquid diet for 12 weeks. Our results showed that U87, 5S rRNA, GAPDH, and U5a were the most reliable gene candidates for reference genes in heart and brain tissue. However, different gene stability ranking was specific for each tissue input combination. The present preliminary findings highlight the variability in reference gene rankings across different experimental conditions and analytic methods and constitute a fundamental step for gene expression assays

    Boldness Predicts Social Status in Zebrafish (Danio rerio)

    Get PDF
    This study explored if boldness could be used to predict social status. First, boldness was assessed by monitoring individual zebrafish behaviour in (1) an unfamiliar barren environment with no shelter (open field), (2) the same environment when a roof was introduced as a shelter, and (3) when the roof was removed and an unfamiliar object (Lego® brick) was introduced. Next, after a resting period of minimum one week, social status of the fish was determined in a dyadic contest and dominant/subordinate individuals were determined as the winner/loser of two consecutive contests. Multivariate data analyses showed that males were bolder than females and that the behaviours expressed by the fish during the boldness tests could be used to predict which fish would later become dominant and subordinate in the ensuing dyadic contest. We conclude that bold behaviour is positively correlated to dominance in zebrafish and that boldness is not solely a consequence of social dominance

    Interactions Between Estrogen- and Ah-Receptor Signalling Pathways in Primary Culture of Salmon Hepatocytes Exposed to Nonylphenol and 3,3',4,4'-Tetrachlorobiphenyl (Congener 77)

    Get PDF
    BACKGROUND: The estrogenic and xenobiotic biotransformation gene expressions are receptor-mediated processes that are ligand structure-dependent interactions with estrogen-receptor (ER) and aryl hydrocarbon receptor (AhR), probably involving all subtypes and other co-factors. The anti-estrogenic activities of AhR agonists have been reported. In teleost fish, exposure to AhR agonists has been associated with reduced Vtg synthesis or impaired gonadal development in both in vivo- and in vitro studies. Inhibitory AhR and ER cross-talk have also been demonstrated in breast cancer cells, rodent uterus and mammary tumors. Previous studies have shown that AhR-agonists potentiate xenoestrogen-induced responses in fish in vivo system. Recently, several studies have shown that AhR-agonists directly activate ERα and induce estrogenic responses in mammalian in vitro systems. In this study, two separate experiments were performed to study the molecular interactions between ER and AhR signalling pathways using different concentration of PCB-77 (an AhR-agonist) and time factor, respectively. Firstly, primary Atlantic salmon hepatocytes were exposed to nonylphenol (NP: 5 μM – an ER agonist) singly or in combination with 0.001, 0.01 and 1 μM PCB-77 and sampled at 48 h post-exposure. Secondly, hepatocytes were exposed to NP (5 μM) or PCB-77 (1 μM) singly or in combination for 12, 24, 48 and 72 h. Samples were analyzed using a validated real-time PCR for genes in the ER pathway or known to be NP-responsive and AhR pathway or known to be PCB-77 responsive. RESULTS: Our data showed a reciprocal inhibitory interaction between NP and PCB-77. PCB-77 produced anti-NP-mediated effect by decreasing the mRNA expression of ER-responsive genes. NP produced anti-AhR mediated effect or as inhibitor of AhRα, AhRR, ARNT, CYP1A1 and UDPGT expression. A novel aspect of the present study is that low (0.001 μM) and medium (0.01 μM) PCB-77 concentrations increased ERα mRNA expression above control and NP exposed levels, and at 12 h post-exposure, PCB-77 exposure alone produced significant elevation of ERα, ERβ and Zr-protein expressions above control levels. CONCLUSION: The findings in the present study demonstrate a complex mode of ER-AhR interactions that were dependent on time of exposure and concentration of individual chemicals (NP and PCB-77). This complex mode of interaction is further supported by the effect of PCB-77 on ERα and ERβ (shown as increase in transcription) with no concurrent activation of Vtg (but Zr-protein) response. These complex interactions between two different classes of ligand-activated receptors provide novel mechanistic insights on signalling pathways. Therefore, the degree of simultaneous interactions between the ER and AhR gene transcripts demonstrated in this study supports the concept of cross-talk between these signalling pathways

    Changing expression of vertebrate immunity genes in an anthropogenic environment: a controlled experiment

    Get PDF
    Background: The effect of anthropogenic environments on the function of the vertebrate immune system is a problem of general importance. For example, it relates to the increasing rates of immunologically-based disease in modern human populations and to the desirability of identifying optimal immune function in domesticated animals. Despite this importance, our present understanding is compromised by a deficit of experimental studies that make adequately matched comparisons between wild and captive vertebrates. Results: We transferred post-larval fishes (three-spined sticklebacks), collected in the wild, to an anthropogenic (captive) environment. We then monitored, over 11 months, how the systemic expression of immunity genes changed in comparison to cohort-matched wild individuals in the originator population (total n = 299). We found that a range of innate (lyz, defbl2, il1r-like, tbk1)and adaptive (cd8a, igmh) immunity genes were up-regulated in captivity, accompanied by an increase in expression of the antioxidant enzyme, gpx4a. For some genes previously known to show seasonality in the wild, this appeared to be reduced in captive fishes. Captive fishes tended to express immunity genes, including igzh, foxp3b, lyz, defbl2, and il1r-like, more variably. Furthermore, although gene co-expression patterns (analyzed through gene-by-gene correlations and mutual information theory based networks) shared common structure in wild and captive fishes, there was also significant divergence. For one gene in particular, defbl2, high expression was associated with adverse health outcomes in captive fishes. Conclusion: Taken together, these results demonstrate widespread regulatory changes in the immune system in captive populations, and that the expression of immunity genes is more constrained in the wild. An increase in constitutive systemic immune activity, such as we observed here, may alter the risk of immunopathology and contribute to variance in health in vertebrate populations exposed to anthropogenic environments

    Modulation of the expression of components of the stress response by dietary arachidonic acid in European sea bass (Dicentrarchus labrax) larvae

    Get PDF
    This study reports for the first time in European sea bass, Dicentrarchus labrax (L.), larvae, the effect of different levels of dietary arachidonic acid (ARA; 20:4n-6) on the expression of genes related to the fish stress response. Copies of mRNA from genes related to steroidogenesis (StAR (steroidogenic acute regulatory protein), c-Fos, and CYP11β (11β- hydroxylase gene)), glucocorticoid receptor complex (GR (glucorticoid receptor) and HSP (heat shock proteins) 70 and 90) and antioxidative stress (catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPX)) were quantified. Eighteen day-old larvae were fed for 14 days with three experimental diets with increasing levels of ARA (0.3, 0.6 and 1.2% d.w.) and similar levels of docosahexaenoic (DHA; 22:6n-3) and eicosapentaenoic (EPA; 20:5n-3) acids (5 and 3%, respectively). The quantification of stress-related genes transcripts was conducted by One-Step TaqMan real time RT-PCR with the standard curve method (absolute quantification). Increase dietary levels of ARA induced a significantly (p<0.05) down-regulation of genes related to cortisol synthesis, such as StAR and CYP11β and up-regulated genes related to glucocorticoid receptor complex, such as HSP70 and GR. No effects were observed on antioxidant enzymes gene expression. These results revealed the regulatory role of dietary ARA on the expression of stress-related genes in European sea bass larvae

    Molecular psychiatry of zebrafish

    Get PDF
    Due to their well-characterized neural development and high genetic homology to mammals, zebrafish (Danio rerio) have emerged as a powerful model organism in the field of biological psychiatry. Here, we discuss the molecular psychiatry of zebrafish, and its implications for translational neuroscience research and modeling central nervous system (CNS) disorders. In particular, we outline recent genetic and technological developments allowing for in vivo examinations, high-throughput screening and whole-brain analyses in larval and adult zebrafish. We also summarize the application of these molecular techniques to the understanding of neuropsychiatric disease, outlining the potential of zebrafish for modeling complex brain disorders, including attention-deficit/hyperactivity disorder (ADHD), aggression, post-traumatic stress and substance abuse. Critically evaluating the advantages and limitations of larval and adult fish tests, we suggest that zebrafish models become a rapidly emerging new field in modern molecular psychiatry research

    Swimming physiology of European silver eels (Anguilla anguilla L.): energetic costs and effects on sexual maturation and reproduction

    Get PDF
    The European eel migrates 5,000–6,000 km to the Sargasso Sea to reproduce. Because they venture into the ocean in a pre-pubertal state and reproduce after swimming for months, a strong interaction between swimming and sexual maturation is expected. Many swimming trials have been performed in 22 swim tunnels to elucidate their performance and the impact on maturation. European eels are able to swim long distances at a cost of 10–12 mg fat/km which is 4–6 times more efficient than salmonids. The total energy costs of reproduction correspond to 67% of the fat stores. During long distance swimming, the body composition stays the same showing that energy consumption calculations cannot be based on fat alone but need to be compensated for protein oxidation. The optimal swimming speed is 0.61–0.67 m s−1, which is ~60% higher than the generally assumed cruise speed of 0.4 m s−1 and implies that female eels may reach the Sargasso Sea within 3.5 months instead of the assumed 6 months. Swimming trials showed lipid deposition and oocyte growth, which are the first steps of sexual maturation. To investigate effects of oceanic migration on maturation, we simulated group-wise migration in a large swim-gutter with seawater. These trials showed suppressed gonadotropin expression and vitellogenesis in females, while in contrast continued sexual maturation was observed in silver males. The induction of lipid deposition in the oocytes and the inhibition of vitellogenesis by swimming in females suggest a natural sequence of events quite different from artificial maturation protocols

    Near-future CO2 levels impair the olfactory system of a marine fish

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordData availability: All raw sequence data are accessible at the NCBI Sequence Read Archive through accession number SRP097118. Water chemistry, behaviour and electrophysiology data are available through Pangaea (https://doi.pangaea.de/10.1594/PANGAEA.884674).Survival of marine fishes that are exposed to elevated near-future CO2levels is threatened by their altered responses to sensory cues. Here we demonstrate a physiological and molecular mechanism in the olfactory system that helps to explain altered behaviour under elevated CO2. We combine electrophysiology measurements and transcriptomics with behavioural experiments to investigate how elevated CO2affects the olfactory system of European sea bass (Dicentrarchus labrax). When exposed to elevated CO2(approximately 1,000 µatm), fish must be up to 42% closer to an odour source for detection, compared with current CO2levels (around 400 µatm), decreasing their chances of detecting food or predators. Compromised olfaction correlated with the suppression of the transcription of genes involved in synaptic strength, cell excitability and wiring of the olfactory system in response to sustained exposure to elevated CO2levels. Our findings complement the previously proposed impairment of γ-aminobutyric acid receptors, and indicate that both the olfactory system and central brain function are compromised by elevated CO2levels.This study was supported by grants from Association of European Marine Biology Laboratories (227799), the Natural Environment Research Council (R.W.W.; NE/H017402/1), the Biotechnology and Biological Sciences Research Council (R.W.W.; BB/D005108/1), Fundação para a Ciência e Tecnologia (Portuguese Science Ministry) (UID/Multi/04326/2013) and a Royal Society Newton International Fellowship to C.S.P. C.S.P. is also a beneficiary of a Starting Grant from AXA
    corecore