270 research outputs found

    Super-solar N/C in the NLS1 Galaxy Markarian 1044

    Full text link
    Narrow-Line Seyfert 1s (NLS1s) are known to have extreme values of a number of properties compared to Active Galactic Nuclei (AGN) as a class. In particular, previous emission-line studies have suggested that NLS1s are unusually metal rich compared to broad-line AGN of comparable luminosity. We present low- and medium-resolution spectroscopic observations of the NLS1 Markarian 1044 with the Hubble Space Telescope Imaging Spectrometer (STIS). We identify two blueshifted intrinsic absorption systems at -1145 and -295 km/s relative to the systemic velocity of the galaxy. Using a simple photoionization model of the absorbing gas, we find that the strongest and best-measured of the absorption systems has N/C approximately 6.96 times the solar value. We also report on the discovery of three new Ly-alpha forest lines with neutral Hydrogen column density log greater than 12.77 in the log. This number is consistent with the 2.6 expected in the path length to the source redshift of Mrk 1044.Comment: Submitted to ApJ. 21 pages including 4 figures & 5 table

    Search for Nucleon Decay with Final States l+ eta, nubar eta, and nubar pi+,0 Using Soudan 2

    Full text link
    We have searched for nucleon decay into five two-body final states using a 4.4 kiloton-year fiducial exposure of the Soudan 2 iron tracking calorimeter. For proton decay into the fully visible final states mu+ eta and e+ eta, we observe zero and one event, respectively, that satisfy our search criteria for nucleon decay. The lifetime lower limits (tau/B) thus implied are 89 x 10^30 years and 81 x 10^30 years at 90% confidence level. For neutron decay into nubar eta, we obtain the lifetime lower limit 71 x 10^30 years. Limits are also reported for neutron decay into nubar pi0, and for proton decay into nubar pi+.Comment: 24 pages, 9 figures, 3 table

    First observations of separated atmospheric nu_mu and bar{nu-mu} events in the MINOS detector

    Get PDF
    The complete 5.4 kton MINOS far detector has been taking data since the beginning of August 2003 at a depth of 2070 meters water-equivalent in the Soudan mine, Minnesota. This paper presents the first MINOS observations of nuµ and [overline nu ]µ charged-current atmospheric neutrino interactions based on an exposure of 418 days. The ratio of upward- to downward-going events in the data is compared to the Monte Carlo expectation in the absence of neutrino oscillations, giving Rup/downdata/Rup/downMC=0.62-0.14+0.19(stat.)±0.02(sys.). An extended maximum likelihood analysis of the observed L/E distributions excludes the null hypothesis of no neutrino oscillations at the 98% confidence level. Using the curvature of the observed muons in the 1.3 T MINOS magnetic field nuµ and [overline nu ]µ interactions are separated. The ratio of [overline nu ]µ to nuµ events in the data is compared to the Monte Carlo expectation assuming neutrinos and antineutrinos oscillate in the same manner, giving R[overline nu ][sub mu]/nu[sub mu]data/R[overline nu ][sub mu]/nu[sub mu]MC=0.96-0.27+0.38(stat.)±0.15(sys.), where the errors are the statistical and systematic uncertainties. Although the statistics are limited, this is the first direct observation of atmospheric neutrino interactions separately for nuµ and [overline nu ]µ

    Use of cDNA Tiling Arrays for Identifying Protein Interactions Selected by In Vitro Display Technologies

    Get PDF
    In vitro display technologies such as mRNA display are powerful screening tools for protein interaction analysis, but the final cloning and sequencing processes represent a bottleneck, resulting in many false negatives. Here we describe an application of tiling array technology to identify specifically binding proteins selected with the in vitro virus (IVV) mRNA display technology. We constructed transcription-factor tiling (TFT) arrays containing ∼1,600 open reading frame sequences of known and predicted mouse transcription-regulatory factors (334,372 oligonucleotides, 50-mer in length) to analyze cDNA fragments from mRNA-display screening for Jun-associated proteins. The use of the TFT arrays greatly increased the coverage of known Jun-interactors to 28% (from 14% with the cloning and sequencing approach), without reducing the accuracy (∼75%). This method could detect even targets with extremely low expression levels (less than a single mRNA copy per cell in whole brain tissue). This highly sensitive and reliable method should be useful for high-throughput protein interaction analysis on a genome-wide scale

    Inferring Binding Energies from Selected Binding Sites

    Get PDF
    We employ a biophysical model that accounts for the non-linear relationship between binding energy and the statistics of selected binding sites. The model includes the chemical potential of the transcription factor, non-specific binding affinity of the protein for DNA, as well as sequence-specific parameters that may include non-independent contributions of bases to the interaction. We obtain maximum likelihood estimates for all of the parameters and compare the results to standard probabilistic methods of parameter estimation. On simulated data, where the true energy model is known and samples are generated with a variety of parameter values, we show that our method returns much more accurate estimates of the true parameters and much better predictions of the selected binding site distributions. We also introduce a new high-throughput SELEX (HT-SELEX) procedure to determine the binding specificity of a transcription factor in which the initial randomized library and the selected sites are sequenced with next generation methods that return hundreds of thousands of sites. We show that after a single round of selection our method can estimate binding parameters that give very good fits to the selected site distributions, much better than standard motif identification algorithms

    Financial Satisfaction and (in)formal Sector in a Transition Country

    Get PDF
    This paper examines the relationship between working in the formal or informal sector and self-reported individual financial satisfaction in a country in transition. It does so by allowing for individual heterogeneity in terms of perceived financial insecurity and tax morale. The empirical analysis uses a dataset for Albania, a country in transition. The method applied is the ‘self-administered questionnaire’, which combines personal contacts with written questionnaire. The results indicate that, for most individuals, working in the informal sector has negative effects on their self reported financial satisfaction. For some individuals, however, this effect is positive. The characteristic defining these two groups of individuals is their attitude towards the perceived financial insecurity related to not paying taxes. These findings have important implications, in particular for transition countries with large informal sectors. Given the involuntary participation in the informal sector in these countries, the majority of individuals working in this sector will remain financially dissatisfied as long as they have no other social safety net

    Ontogeny-Driven rDNA Rearrangement, Methylation, and Transcription, and Paternal Influence

    Get PDF
    Gene rearrangement occurs during development in some cell types and this genome dynamics is modulated by intrinsic and extrinsic factors, including growth stimulants and nutrients. This raises a possibility that such structural change in the genome and its subsequent epigenetic modifications may also take place during mammalian ontogeny, a process undergoing finely orchestrated cell division and differentiation. We tested this hypothesis by comparing single nucleotide polymorphism-defined haplotype frequencies and DNA methylation of the rDNA multicopy gene between two mouse ontogenic stages and among three adult tissues of individual mice. Possible influences to the genetic and epigenetic dynamics by paternal exposures were also examined for Cr(III) and acid saline extrinsic factors. Variables derived from litters, individuals, and duplicate assays in large mouse populations were examined using linear mixed-effects model. We report here that active rDNA rearrangement, represented by changes of haplotype frequencies, arises during ontogenic progression from day 8 embryos to 6-week adult mice as well as in different tissue lineages and is modifiable by paternal exposures. The rDNA methylation levels were also altered in concordance with this ontogenic progression and were associated with rDNA haplotypes. Sperm showed highest level of methylation, followed by lungs and livers, and preferentially selected haplotypes that are positively associated with methylation. Livers, maintaining lower levels of rDNA methylation compared with lungs, expressed more rRNA transcript. In vitro transcription demonstrated haplotype-dependent rRNA expression. Thus, the genome is also dynamic during mammalian ontogeny and its rearrangement may trigger epigenetic changes and subsequent transcriptional controls, that are further influenced by paternal exposures

    The Brain Matures with Stronger Functional Connectivity and Decreased Randomness of Its Network

    Get PDF
    We investigated the development of the brain's functional connectivity throughout the life span (ages 5 through 71 years) by measuring EEG activity in a large population-based sample. Connectivity was established with Synchronization Likelihood. Relative randomness of the connectivity patterns was established with Watts and Strogatz' (1998) graph parameters C (local clustering) and L (global path length) for alpha (∼10 Hz), beta (∼20 Hz), and theta (∼4 Hz) oscillation networks. From childhood to adolescence large increases in connectivity in alpha, theta and beta frequency bands were found that continued at a slower pace into adulthood (peaking at ∼50 yrs). Connectivity changes were accompanied by increases in L and C reflecting decreases in network randomness or increased order (peak levels reached at ∼18 yrs). Older age (55+) was associated with weakened connectivity. Semi-automatically segmented T1 weighted MRI images of 104 young adults revealed that connectivity was significantly correlated to cerebral white matter volume (alpha oscillations: r = 33, p<01; theta: r = 22, p<05), while path length was related to both white matter (alpha: max. r = 38, p<001) and gray matter (alpha: max. r = 36, p<001; theta: max. r = 36, p<001) volumes. In conclusion, EEG connectivity and graph theoretical network analysis may be used to trace structural and functional development of the brain
    • …
    corecore