42 research outputs found

    Role of HOX Genes in Stem Cell Differentiation and Cancer.

    Get PDF
    HOX genes encode an evolutionarily conserved set of transcription factors that control how the phenotype of an organism becomes organized during development based on its genetic makeup. For example, in bilaterian-type animals, HOX genes are organized in gene clusters that encode anatomic segment identity, that is, whether the embryo will form with bilateral symmetry with a head (anterior), tail (posterior), back (dorsal), and belly (ventral). Although HOX genes are known to regulate stem cell (SC) differentiation and HOX genes are dysregulated in cancer, the mechanisms by which dysregulation of HOX genes in SCs causes cancer development is not fully understood. Therefore, the purpose of this manuscript was (i) to review the role of HOX genes in SC differentiation, particularly in embryonic, adult tissue-specific, and induced pluripotent SC, and (ii) to investigate how dysregulated HOX genes in SCs are responsible for the development of colorectal cancer (CRC) and acute myeloid leukemia (AML). We analyzed HOX gene expression in CRC and AML using information from The Cancer Genome Atlas study. Finally, we reviewed the literature on HOX genes and related therapeutics that might help us understand ways to develop SC-specific therapies that target aberrant HOX gene expression that contributes to cancer development

    An APC:WNT Counter-Current-Like Mechanism Regulates Cell Division Along the Human Colonic Crypt Axis: A Mechanism That Explains How APC Mutations Induce Proliferative Abnormalities That Drive Colon Cancer Development.

    Get PDF
    APC normally down-regulates WNT signaling in human colon, and APC mutations cause proliferative abnormalities in premalignant crypts leading to colon cancer, but the mechanisms are unclear at the level of spatial and functional organization of the crypt. Accordingly, we postulated a counter-current-like mechanism based on gradients of factors (APC;WNT) that regulate colonocyte proliferation along the crypt axis. During crypt renewal, stem cells (SCs) at the crypt bottom generate non-SC daughter cells that proliferate and differentiate while migrating upwards. The APC concentration is low at the crypt bottom and high at the top (where differentiated cells reside). WNT signaling, in contrast, is high at the bottom (where SCs reside) and low at the top. Given that WNT and APC gradients are counter to one another, we hypothesized that a counter-current-like mechanism exists. Since both APC and WNT signaling components (e.g., survivin) are required for mitosis, this mechanism establishes a zone in the lower crypt where conditions are optimal for maximal cell division and mitosis orientation (symmetric versus asymmetric). APC haploinsufficiency diminishes the APC gradient, shifts the proliferative zone upwards, and increases symmetric division, which causes SC overpopulation. In homozygote mutant crypts, these changes are exacerbated. Thus, APC-mutation-induced changes in the counter-current-like mechanism cause expansion of proliferative populations (SCs, rapidly proliferating cells) during tumorigenesis. We propose this mechanism also drives crypt fission, functions in the crypt cycle, and underlies adenoma development. Novel chemoprevention approaches designed to normalize the two gradients and readjust the proliferative zone downwards, might thwart progression of these premalignant changes

    The 2017 ACC/AHA Hypertension Guidelines: Should they have included proven nonpharmacological blood pressure‐lowering strategies such as Transcendental Meditation?

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148410/1/jch13488_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148410/2/jch13488.pd

    The anti-cancer effect of retinoic acid signaling in CRC occurs via decreased growth of ALDH+ colon cancer stem cells and increased differentiation of stem cells

    Get PDF
    Background: Tumorigenesis is driven by stem cell (SC) overpopulation. BecauseALDH is both a marker for SCs in many tissues and a key enzyme in retinoid acid (RA)signaling, we studied RA signaling in normal and malignant colonic SCs.Hypothesis: RA signaling regulates growth and differentiation of ALDH+ colonicSCs dysregulation of RA signaling contributes to SC overpopulation and colorectalcancer (CRC) development.Methods: We analyzed normal and malignant colonic tissues and CRC cell linesto see if retinoid receptors (RXR &RAR) are exclusively expressed in ALDH+ SCs,and if RA signaling changes during CRC development. We determined whether RAsignaling regulates cancer SC (CSC) proliferation, differentiation, sphere formation,and population size.Results: RXR &RAR were expressed in ALDH+ colonic SCs, but not in MCM2+proliferative cells. Western blotting/immunostaining of CRCs revealed that RAsignaling components become overexpressed in parallel with ALDH overexpression,which coincides with the known overpopulation of ALDH+ SCs that occurs during,and drives, CRC development. Treatment of SCs with all-trans retinoic acid (ATRA)decreased proliferation, sphere formation and ALDH+ SC population size, and induceddifferentiation along the neuroendocrine cell (NEC) lineage.Conclusions: Retinoid signaling, by regulating ALDH+ colonic CSCs, decreases SCproliferation, sphere formation, and population size, and increases SC differentiation toNECs. Dysregulation of RA signaling in colonic SCs likely contributes to overpopulationof ALDH+ SCs and CRC growth.Implications: That retinoid receptors RXR and RAR are selectively expressed inALDH+ SCs indicates RA signaling mainly occurs via ALDH+ SCs, which provides amechanism to selectively target CSCs. © 2018 Impact Journals LLC. All rights reserved

    Identification of a developmental gene expression signature, including HOX genes, for the normal human colonic crypt stem cell niche: overexpression of the signature parallels stem cell overpopulation during colon tumorigenesis.

    Get PDF
    Our goal was to identify a unique gene expression signature for human colonic stem cells (SCs). Accordingly, we determined the gene expression pattern for a known SC-enriched region--the crypt bottom. Colonic crypts and isolated crypt subsections (top, middle, and bottom) were purified from fresh, normal, human, surgical specimens. We then used an innovative strategy that used two-color microarrays (∼18,500 genes) to compare gene expression in the crypt bottom with expression in the other crypt subsections (middle or top). Array results were validated by PCR and immunostaining. About 25% of genes analyzed were expressed in crypts: 88 preferentially in the bottom, 68 in the middle, and 131 in the top. Among genes upregulated in the bottom, ∼30% were classified as growth and/or developmental genes including several in the PI3 kinase pathway, a six-transmembrane protein STAMP1, and two homeobox (HOXA4, HOXD10) genes. qPCR and immunostaining validated that HOXA4 and HOXD10 are selectively expressed in the normal crypt bottom and are overexpressed in colon carcinomas (CRCs). Immunostaining showed that HOXA4 and HOXD10 are co-expressed with the SC markers CD166 and ALDH1 in cells at the normal crypt bottom, and the number of these co-expressing cells is increased in CRCs. Thus, our findings show that these two HOX genes are selectively expressed in colonic SCs and that HOX overexpression in CRCs parallels the SC overpopulation that occurs during CRC development. Our study suggests that developmental genes play key roles in the maintenance of normal SCs and crypt renewal, and contribute to the SC overpopulation that drives colon tumorigenesis

    MicroRNA Expression Profiling of Normal and Malignant Human Colonic Stem Cells Identifies

    Get PDF
    MicroRNAs (miRNAs) have a critical role in regulating stem cells (SCs) during development, and because aberrant expression of miRNAs occurs in various cancers, our goal was to determine if dysregulation of miRNAs is involved in the SC origin of colorectal cancer (CRC). We previously reported that aldehyde dehydrogenase (ALDH) is a marker for normal and malignant human colonic SCs and tracks SC overpopulation during colon tumorigenesis. MicroRNA expression was studied in ALDH-positive SCs from normal and malignant human colon tissues by Nanostring miRNA profiling. Our findings show that: (1) A unique miRNA signature distinguishes ALDH-positive CRC cells from ALDH-positive normal colonic epithelial cells, (2) Expression of four miRNAs (miRNA200c, miRNA92a, miRNA20a, miRNA93) are significantly altered in CRC SCs compared to normal colonic SCs, (3) miRNA92a expression is also upregulated in ALDH-positive HT29 CRC SCs as compared to ALDH-negative SCs, (4) miRNA92a targets the 3\u27UTR of LRIG1 SC gene, and (5) miRNA92a modulates proliferation of HT29 CRC cells. Thus, our findings indicate that overexpression of miRNA92a contributes to the SC origin of CRC. Strategies designed to modulate miRNA expression, such as miRNA92a, may provide ways to target malignant SCs and to develop more effective therapies against CRC

    The v8-10 Variant Isoform of CD44 is Selectively Expressed in the Normal Human Colonic Stem Cell Niche and Frequently is Overexpressed in Colon Carcinomas During Tumor Development

    Get PDF
    CD44 protein and its variant isoforms are expressed in cancer stem cells (CSCs), and various CD44 isoforms can have different functional roles in cells. Our goal was to investigate how different CD44 isoforms contribute to the emergence of stem cell (SC) overpopulation that drives colorectal cancer (CRC) development. Specific CD44 variant isoforms are selectively expressed in normal colonic SCs and become overexpressed in CRCs during tumor development. We created a unique panel of anti-CD44 rabbit genomic antibodies to 16 specific epitopes that span the entire length of the CD44 molecule. Our panel was used to comprehensively investigate the expression of different CD44 isoforms in matched pairs (n = 10) of malignant colonic tissue and adjacent normal mucosa, using two (IHC & IF) immunostaining approaches. We found that: i) CD44v8-10 is selectively expressed in the normal human colonic SC niche; ii) CD44v8-10 is co-expressed with the SC markers ALDH1 and LGR5 in normal and malignant colon tissues; iii) colon carcinoma tissues frequently (80%) stain for CD44v8-10 while staining for CD44v6 was less frequent (40%). Given that CD44v8-10 expression is restricted to cells in the normal human colonic SC niche and CD44v8-10 expression progressively increases during CRC development, CD44v8-10 expression likely contributes to the SC overpopulation that drives the development and growth of colon cancers. Since the CD44 variant v8-10 epitope is located on CD44\u27s extracellular region, it offers great promise for targeted anti-CSC treatment approaches
    corecore