19 research outputs found

    ‘Moving in concentric circles’? The history and politics of press inquiries

    Get PDF
    In this paper, we consider the Leveson inquiry's use of a narrative device – the policy cycle – to justify the need for a break with the past. We challenge that narrative, which runs through much of the literature, and posit a more nuanced and complex account of the politics and history of press inquiries, drawing upon the political science literature. We then reflect upon the implications of our findings for the future of press regulation

    A Radiodensity Histogram Study of the Brain in Multiple Sclerosis

    No full text
    Multiple sclerosis (MS) is a progressive neurodegenerative disease, affecting 1 million Americans and 2.5 million people globally. Although the diagnosis is made clinically, imaging plays a major role in diagnosing and monitoring disease progression and treatment response. Magnetic resonance imaging (MRI) has proven sensitive in imaging MS lesions, but the characterization offered by routine clinical MRI remains qualitative and with discrepancies between imaging and clinical findings. We investigated the ability of digital analysis of noncontrast head computed tomography (CT) images to detect global brain changes of MS. All routine diagnostic head CTs obtained on patients with known MS obtained from 1 of 2 scan platforms from 6/1/2011 to 6/1/2015 were reviewed. Head CT images from 54 patients with MS met inclusion criteria. Head CT images were processed and histogram metrics were compared to age- and gender- matched control subjects from the same CT scanners during the same time interval. Histogram metrics were correlated with plaque burden as seen on MRI studies. Compared with control subjects, patients had increased total brain radiodensity (P < 0.0001), further characterized as an increased histogram modal radiodensity (P < 0.0001) with decrease in histogram skewness (P < 0.0001). Radiodensity decreased with increasing plaque burden. Similar findings were seen in the patients with only mild plaque burden sub- group. Radiodensity is a unique tissue metric that is not measured by other imaging techniques. Our study finds that brain radiodensity histogram metrics highly correlate with MS, even in cases with minimal plaque burden

    Spatially-segmented undersampled MRI temperature reconstruction for transcranial MR-guided focused ultrasound

    Get PDF
    BACKGROUND: Volumetric thermometry with fine spatiotemporal resolution is desirable to monitor MR-guided focused ultrasound (MRgFUS) procedures in the brain, but requires some form of accelerated imaging. Accelerated MR temperature imaging methods have been developed that undersample k-space and leverage signal correlations over time to suppress the resulting undersampling artifacts. However, in transcranial MRgFUS treatments, the water bath surrounding the skull creates signal variations that do not follow those correlations, leading to temperature errors in the brain due to signal aliasing. METHODS: To eliminate temperature errors due to the water bath, a spatially-segmented iterative reconstruction method was developed. The method fits a k-space hybrid signal model to reconstruct temperature changes in the brain, and a conventional MR signal model in the water bath. It was evaluated using single-channel 2DFT Cartesian, golden angle radial, and spiral data from gel phantom heating, and in vivo 8-channel 2DFT data from a FUS thalamotomy. Water bath signal intensity in phantom heating images was scaled between 0-100% to investigate its effect on temperature error. Temperature reconstructions of retrospectively undersampled data were performed using the spatially-segmented method, and compared to conventional whole-image k-space hybrid (phantom) and SENSE (in vivo) reconstructions. RESULTS: At 100% water bath signal intensity, 3 ×-undersampled spatially-segmented temperature reconstruction error was nearly 5-fold lower than the whole-image k-space hybrid method. Temperature root-mean square error in the hot spot was reduced on average by 27 × (2DFT), 5 × (radial), and 12 × (spiral) using the proposed method. It reduced in vivo error 2 × in the brain for all acceleration factors, and between 2 × and 3 × in the temperature hot spot for 2-4 × undersampling compared to SENSE. CONCLUSIONS: Separate reconstruction of brain and water bath signals enables accelerated MR temperature imaging during MRgFUS procedures with low errors due to undersampling using Cartesian and non-Cartesian trajectories. The spatially-segmented method benefits from multiple coils, and reconstructs temperature with lower error compared to measurements from SENSE-reconstructed images. The acceleration can be applied to increase volumetric coverage and spatiotemporal resolution
    corecore