2,188 research outputs found

    Neural Decision Boundaries for Maximal Information Transmission

    Get PDF
    We consider here how to separate multidimensional signals into two categories, such that the binary decision transmits the maximum possible information transmitted about those signals. Our motivation comes from the nervous system, where neurons process multidimensional signals into a binary sequence of responses (spikes). In a small noise limit, we derive a general equation for the decision boundary that locally relates its curvature to the probability distribution of inputs. We show that for Gaussian inputs the optimal boundaries are planar, but for non-Gaussian inputs the curvature is nonzero. As an example, we consider exponentially distributed inputs, which are known to approximate a variety of signals from natural environment.Comment: 5 pages, 3 figure

    Optimal measurement of visual motion across spatial and temporal scales

    Full text link
    Sensory systems use limited resources to mediate the perception of a great variety of objects and events. Here a normative framework is presented for exploring how the problem of efficient allocation of resources can be solved in visual perception. Starting with a basic property of every measurement, captured by Gabor's uncertainty relation about the location and frequency content of signals, prescriptions are developed for optimal allocation of sensors for reliable perception of visual motion. This study reveals that a large-scale characteristic of human vision (the spatiotemporal contrast sensitivity function) is similar to the optimal prescription, and it suggests that some previously puzzling phenomena of visual sensitivity, adaptation, and perceptual organization have simple principled explanations.Comment: 28 pages, 10 figures, 2 appendices; in press in Favorskaya MN and Jain LC (Eds), Computer Vision in Advanced Control Systems using Conventional and Intelligent Paradigms, Intelligent Systems Reference Library, Springer-Verlag, Berli

    Attentional capture by alcohol-related stimuli may be activated involuntarily by top-down search goals

    Get PDF
    Previous research has found that the attention of social drinkers is preferentially oriented towards alcohol related stimuli (attentional capture). This is argued to play a role in escalating craving for alcohol that can result in hazardous drinking. According to Incentive theories of drug addiction, the stimuli associated with the drug reward acquire learned incentive salience, and grab attention. However, it is not clear whether the mechanism by which this bias is created is a voluntary or an automatic one, although some evidence suggests a stimulus-driven mechanism. Here we test for the first time whether this attentional capture could reflect an involuntary consequence of a goal-driven mechanism. Across three experiments, participants were given search goals to detect either an alcoholic or a non-alcoholic object (target) in a stream of briefly presented objects unrelated to the target. Prior to the target, a task-irrelevant parafoveal distractor appeared. This could either be congruent or incongruent with the current search goal. Applying a meta-analysis, we combined the results across the three experiments and found consistent evidence of goal-driven attentional capture; whereby alcohol distractors impeded target detection when the search goal was for alcohol. By contrast, alcohol distractors did not interfere with target detection while participants were searching for a non-alcoholic category. A separate experiment revealed that the goal-driven capture effect was not found when participants held alcohol features active in memory but did not intentionally search for them. These findings suggest a strong goal-driven account of attentional capture by alcohol cues in social drinkers

    Large Anomalous Hall effect in a silicon-based magnetic semiconductor

    Full text link
    Magnetic semiconductors are attracting high interest because of their potential use for spintronics, a new technology which merges electronics and manipulation of conduction electron spins. (GaMn)As and (GaMn)N have recently emerged as the most popular materials for this new technology. While Curie temperatures are rising towards room temperature, these materials can only be fabricated in thin film form, are heavily defective, and are not obviously compatible with Si. We show here that it is productive to consider transition metal monosilicides as potential alternatives. In particular, we report the discovery that the bulk metallic magnets derived from doping the narrow gap insulator FeSi with Co share the very high anomalous Hall conductance of (GaMn)As, while displaying Curie temperatures as high as 53 K. Our work opens up a new arena for spintronics, involving a bulk material based only on transition metals and Si, and which we have proven to display a variety of large magnetic field effects on easily measured electrical properties.Comment: 19 pages with 5 figure

    Impacts of 4D BIM on Construction Project Performance

    Get PDF
    A significant proportion of construction projects are failing to achieve their deadline finish dates. This advocate for solutions that could address the root causes of time impacting risks, leading to the use of 4D BIM for project planning. This study investigates the impacts of 4D BIM on construction projects. An exploratory sequential mixed method research was conducted to initially explore the topic via interviews and literature review, and, subsequently, the themes derived were put into questionnaires to elicit expert knowledge on a wider industry scale. The data were analysed using thematic analysis, reliability analysis, Kruskal-Wallis test and factor analysis. Across the objectives around the impacts of 4D BIM on project reliability, monitoring and diagnosis, the findings presented eight key ways the 4D BIM support project performance. Examples of component factors that were raised was planning efficiency to enhance planner output, assessment and directive with a better comparison of planned and actual progress, and thorough/comprehensive risk reflection to cover wide ranges of issues. Upon further reflection, the finding highlighted the issues of the lack of shared responsibility outside of the planner and BIM coordinator, severe lack of understanding and training regarding 4D BIM and complexity of carrying out the process effectively

    Network adaptation improves temporal representation of naturalistic stimuli in drosophila eye: II Mechanisms

    Get PDF
    Retinal networks must adapt constantly to best present the ever changing visual world to the brain. Here we test the hypothesis that adaptation is a result of different mechanisms at several synaptic connections within the network. In a companion paper (Part I), we showed that adaptation in the photoreceptors (R1-R6) and large monopolar cells (LMC) of the Drosophila eye improves sensitivity to under-represented signals in seconds by enhancing both the amplitude and frequency distribution of LMCs' voltage responses to repeated naturalistic contrast series. In this paper, we show that such adaptation needs both the light-mediated conductance and feedback-mediated synaptic conductance. A faulty feedforward pathway in histamine receptor mutant flies speeds up the LMC output, mimicking extreme light adaptation. A faulty feedback pathway from L2 LMCs to photoreceptors slows down the LMC output, mimicking dark adaptation. These results underline the importance of network adaptation for efficient coding, and as a mechanism for selectively regulating the size and speed of signals in neurons. We suggest that concert action of many different mechanisms and neural connections are responsible for adaptation to visual stimuli. Further, our results demonstrate the need for detailed circuit reconstructions like that of the Drosophila lamina, to understand how networks process information

    Revealing Dissociable Attention Biases in Chronic Smokers Through an Individual-Differences Approach

    Get PDF
    Addiction is accompanied by attentional biases (AB), wherein drug-related cues grab attention independently of their perceptual salience. AB have emerged in different flavours depending on the experimental approach, and their clinical relevance is still debated. In chronic smokers we sought evidence for dissociable attention abnormalities that may play distinct roles in the clinical manifestations of the disorder. Fifty smokers performed a modified visual probe-task measuring two forms of AB and their temporal dynamics, and data on their personality traits and smoking history/ status were collected. Two fully dissociable AB effects were found: A Global effect, reflecting the overall impact of smoke cues on attention, and a Location-specific effect, indexing the impact of smoke cues on visuospatial orienting. Importantly, the two effects could be neatly separated from one another as they: (i) unfolded with dissimilar temporal dynamics, (ii) were accounted for by different sets of predictors associated with personality traits and smoking history and (iii) were not correlated with one another. Importantly, the relevance of each of these two components in the single individual depends on a complex blend of personality traits and smoking habits, a result that future efforts addressing the clinical relevance of addiction-related AB should take into careful consideration.This study was supported by funding provided by the University of Verona to CDL, CC and L

    Radiographers supporting radiologists in the interpretation of screening mammography: a viable strategy to meet the shortage in the number of radiologists.

    Get PDF
    BackgroundAn alternative approach to the traditional model of radiologists interpreting screening mammography is necessary due to the shortage of radiologists to interpret screening mammograms in many countries.MethodsWe evaluated the performance of 15 Mexican radiographers, also known as radiologic technologists, in the interpretation of screening mammography after a 6 months training period in a screening setting. Fifteen radiographers received 6 months standardized training with radiologists in the interpretation of screening mammography using the Breast Imaging Reporting and Data System (BI-RADS) system. A challenging test set of 110 cases developed by the Breast Cancer Surveillance Consortium was used to evaluate their performance. We estimated sensitivity, specificity, false positive rates, likelihood ratio of a positive test (LR+) and the area under the subject-specific Receiver Operating Characteristic (ROC) curve (AUC) for diagnostic accuracy. A mathematical model simulating the consequences in costs and performance of two hypothetical scenarios compared to the status quo in which a radiologist reads all screening mammograms was also performed.ResultsRadiographer's sensitivity was comparable to the sensitivity scores achieved by U.S. radiologists who took the test but their false-positive rate was higher. Median sensitivity was 73.3 % (Interquartile range, IQR: 46.7-86.7 %) and the median false positive rate was 49.5 % (IQR: 34.7-57.9 %). The median LR+ was 1.4 (IQR: 1.3-1.7 %) and the median AUC was 0.6 (IQR: 0.6-0.7). A scenario in which a radiographer reads all mammograms first, and a radiologist reads only those that were difficult for the radiographer, was more cost-effective than a scenario in which either the radiographer or radiologist reads all mammograms.ConclusionsGiven the comparable sensitivity achieved by Mexican radiographers and U.S. radiologists on a test set, screening mammography interpretation by radiographers appears to be a possible adjunct to radiologists in countries with shortages of radiologists. Further studies are required to assess the effectiveness of different training programs in order to obtain acceptable screening accuracy, as well as the best approaches for the use of non-physician readers to interpret screening mammography
    corecore