10 research outputs found

    Pumpless Extracorporeal Hemadsorption Technique (pEHAT) : A Proof-of-Concept Animal Study

    Get PDF
    Background: Extracorporeal hemadsorption eliminates proinflammatory mediators in critically ill patients with hyperinflammation. The use of a pumpless extracorporeal hemadsorption technique allows its early usage prior to organ failure and the need for an additional medical device. In our animal model, we investigated the feasibility of pumpless extracorporeal hemadsorption over a wide range of mean arterial pressures (MAP). Methods: An arteriovenous shunt between the femoral artery and femoral vein was established in eight pigs. The hemadsorption devices were inserted into the shunt circulation; four pigs received CytoSorb® and four Oxiris® hemadsorbers. Extracorporeal blood flow was measured in a range between mean arterial pressures of 45–85 mmHg. Mean arterial pressures were preset using intravenous infusions of noradrenaline, urapidil, or increased sedatives. Results: Extracorporeal blood flows remained well above the minimum flows recommended by the manufacturers throughout all MAP steps for both devices. Linear regression resulted in CytoSorb® blood flow [mL/min] = 4.226 × MAP [mmHg] − 3.496 (R-square 0.8133) and Oxiris® blood flow [mL/min] = 3.267 × MAP [mmHg] + 57.63 (R-square 0.8708), respectively. Conclusion: Arteriovenous pumpless extracorporeal hemadsorption resulted in sufficient blood flows through both the CytoSorb® and Oxiris® devices over a wide range of mean arterial blood pressures and is likely an intriguing therapeutic option in the early phase of septic shock or hyperinflammatory syndromes

    High resolution propagation-based lung imaging at clinically relevant X-ray dose levels

    Get PDF
    Absorption-based clinical computed tomography (CT) is the current imaging method of choice in the diagnosis of lung diseases. Many pulmonary diseases are affecting microscopic structures of the lung, such as terminal bronchi, alveolar spaces, sublobular blood vessels or the pulmonary interstitial tissue. As spatial resolution in CT is limited by the clinically acceptable applied X-ray dose, a comprehensive diagnosis of conditions such as interstitial lung disease, idiopathic pulmonary fibrosis or the characterization of small pulmonary nodules is limited and may require additional validation by invasive lung biopsies. Propagation-based imaging (PBI) is a phase sensitive X-ray imaging technique capable of reaching high spatial resolutions at relatively low applied radiation dose levels. In this publication, we present technical refinements of PBI for the characterization of different artificial lung pathologies, mimicking clinically relevant patterns in ventilated fresh porcine lungs in a human-scale chest phantom. The combination of a very large propagation distance of 10.7 m and a photon counting detector with [Formula: see text] pixel size enabled high resolution PBI CT with significantly improved dose efficiency, measured by thermoluminescence detectors. Image quality was directly compared with state-of-the-art clinical CT. PBI with increased propagation distance was found to provide improved image quality at the same or even lower X-ray dose levels than clinical CT. By combining PBI with iodine k-edge subtraction imaging we further demonstrate that, the high quality of the calculated iodine concentration maps might be a potential tool for the analysis of lung perfusion in great detail. Our results indicate PBI to be of great value for accurate diagnosis of lung disease in patients as it allows to depict pathological lesions non-invasively at high resolution in 3D. This will especially benefit patients at high risk of complications from invasive lung biopsies such as in the setting of suspected idiopathic pulmonary fibrosis (IPF)

    Prospective Observational Study to Evaluate the Effect of Different Levels of Positive End-Expiratory Pressure on Lung Mechanics in Patients with and without Acute Respiratory Distress Syndrome

    No full text
    Background: The optimal level of positive end-expiratory pressure is still under debate. There are scare data examining the association of PEEP with transpulmonary pressure (TPP), end-expiratory lung volume (EELV) and intraabdominal pressure in ventilated patients with and without ARDS. Methods: We analyzed lung mechanics in 3 patient groups: group A, patients with ARDS; group B, obese patients (body mass index (BMI) > 30 kg/m2) and group C, a control group. Three levels of PEEP (5, 10, 15 cm H2O) were used to investigate the consequences for lung mechanics. Results: Fifty patients were included, 22 in group A, 18 in group B (BMI 38 ± 2 kg/m2) and 10 in group C. At baseline, oxygenation showed no differences between the groups. Driving pressure (ΔP) and transpulmonary pressure (ΔPL) was higher in group B than in groups A and C at a PEEP of 5 cm H2O (ΔP A: 15 ± 1, B: 18 ± 1, C: 14 ± 1 cm H2O; ΔPL A: 10 ± 1, B: 13 ± 1, C: 9 ± 0 cm H2O). Peak inspiratory pressure (Pinsp) rose in all groups as PEEP increased, but the resulting driving pressure and transpulmonary pressure were reduced, whereas EELV increased. Conclusion: Measuring EELV or TPP allows a personalized approach to lung-protective ventilation

    Evaluation of Different Positive End-Expiratory Pressures Using Supreme™ Airway Laryngeal Mask during Minor Surgical Procedures in Children

    No full text
    Background and objectives: The laryngeal mask is the method of choice for airway management in children during minor surgical procedures. There is a paucity of data regarding optimal management of mechanical ventilation in these patients. The Supreme™ airway laryngeal mask offers the option to insert a gastric tube to empty the stomach contents of air and/or gastric juice. The aim of this investigation was to evaluate the impact of positive end-expiratory positive pressure (PEEP) levels on ventilation parameters and gastric air insufflation during general anesthesia in children using pressure-controlled ventilation with laryngeal mask. Materials and Methods: An observational trial was carried out in 67 children aged between 1 and 11 years. PEEP levels of 0, 3 and 5 mbar were tested for 5 min in each patient during surgery and compared with ventilation parameters (dynamic compliance (mL/cmH2O), etCO2 (mmHg), peak pressure (mbar), tidal volume (mL), respiratory rate (per minute), FiO2 and gastric air (mL)) were measured at each PEEP. Air was aspirated from the stomach at the start of the sequence of measurements and at the end. Results: Significant differences were observed for the ventilation parameters: dynamic compliance (PEEP 5 vs. PEEP 3: p < 0.0001, PEEP 5 vs. PEEP 0: p < 0.0001, PEEP 3 vs. PEEP 0: p < 0.0001), peak pressure (PEEP 5 vs. PEEP 3: p < 0.0001, PEEP 5 vs. PEEP 0: p < 0.0001, PEEP 3 vs. PEEP 0: p < 0.0001) and tidal volume (PEEP 5 vs. PEEP 3: p = 0.0048, PEEP 5 vs. PEEP 0: p < 0.0001, PEEP 3 vs. PEEP 0: p < 0.0001). All parameters increased significantly with higher PEEP, with the exception of etCO2 (significant decrease) and respiratory rate (no significant difference). We also showed different values for air quantity in the comparisons between the different PEEP levels (PEEP 5: 2.8 ± 3.9 mL, PEEP 3: 1.8 ± 3.0 mL; PEEP 0: 1.6 ± 2.3 mL) with significant differences between PEEP 5 and PEEP 3 (p = 0.0269) and PEEP 5 and PEEP 0 (p = 0.0209). Conclusions: Our data suggest that ventilation with a PEEP of 5 mbar might be more lung protective in children using the Supreme™ airway laryngeal mask, although gastric air insufflation increased with higher PEEP. We recommend the use of a laryngeal mask with the option of inserting a gastric tube to evacuate potential gastric air

    Effect of moderate elevated intra-abdominal pressure on lung mechanics and histological lung injury at different positive end-expiratory pressures.

    No full text
    INTRODUCTION:Intra-abdominal hypertension (IAH) is a well-known phenomenon in critically ill patients. Effects of a moderately elevated intra-abdominal pressure (IAP) on lung mechanics are still not fully analyzed. Moreover, the optimal positive end-expiratory pressure (PEEP) in elevated IAP is unclear. METHODS:We investigated changes in lung mechanics and transformation in histological lung patterns using three different PEEP levels in eighteen deeply anesthetized pigs with an IAP of 10 mmHg. After establishing the intra-abdominal pressure, we randomized the animals into 3 groups. Each of n = 6 (Group A = PEEP 5, B = PEEP 10 and C = PEEP 15 cmH2O). End-expiratory lung volume (EELV/kg body weight (bw)), pulmonary compliance (Cstat), driving pressure (ΔP) and transpulmonary pressure (ΔPL) were measured for 6 hours. Additionally, the histological lung injury score was calculated. RESULTS:Comparing hours 0 and 6 in group A, there was a decrease of EELV/kg (27±2 vs. 16±1 ml/kg; p<0.05) and of Cstat (42±2 vs. 27±1 ml/cmH2O; p<0.05) and an increase of ΔP (11±0 vs. 17±1 cmH2O; p<0.05) and ΔPL (6±0 vs. 10±1 cmH2O; p<0.05). In group B, there was no significant change in EELV/kg (27±3 vs. 24±3 ml/kg), but a decrease in Cstat (42±3 vs. 32±1 ml/cmH20; p<0.05) and an increase in ΔP (11±1 vs. 15±1 cmH2O; p<0.05) and ΔPL (5±1 vs. 7±0 cmH2O; p<0.05). In group C, there were no significant changes in EELV/kg (27±2 vs. 29±3 ml/kg), ΔP (10±1 vs. 12±1 cmH2O) and ΔPL (5±1 vs. 7±1 cmH2O), but a significant decrease of Cstat (43±1 vs. 37±1 ml/cmH2O; p<0.05). Histological lung injury score was lowest in group B. CONCLUSIONS:A moderate elevated IAP of 10 mmHg leads to relevant changes in lung mechanics during mechanical ventilation. In our study, a PEEP of 10 cmH2O was associated with a lower lung injury score and was able to overcome the IAP induced alterations of EELV

    High resolution propagation-based lung imaging at clinically relevant X-ray dose levels

    No full text
    Abstract Absorption-based clinical computed tomography (CT) is the current imaging method of choice in the diagnosis of lung diseases. Many pulmonary diseases are affecting microscopic structures of the lung, such as terminal bronchi, alveolar spaces, sublobular blood vessels or the pulmonary interstitial tissue. As spatial resolution in CT is limited by the clinically acceptable applied X-ray dose, a comprehensive diagnosis of conditions such as interstitial lung disease, idiopathic pulmonary fibrosis or the characterization of small pulmonary nodules is limited and may require additional validation by invasive lung biopsies. Propagation-based imaging (PBI) is a phase sensitive X-ray imaging technique capable of reaching high spatial resolutions at relatively low applied radiation dose levels. In this publication, we present technical refinements of PBI for the characterization of different artificial lung pathologies, mimicking clinically relevant patterns in ventilated fresh porcine lungs in a human-scale chest phantom. The combination of a very large propagation distance of 10.7 m and a photon counting detector with 100\,\upmu \hbox {m} 100 μ m pixel size enabled high resolution PBI CT with significantly improved dose efficiency, measured by thermoluminescence detectors. Image quality was directly compared with state-of-the-art clinical CT. PBI with increased propagation distance was found to provide improved image quality at the same or even lower X-ray dose levels than clinical CT. By combining PBI with iodine k-edge subtraction imaging we further demonstrate that, the high quality of the calculated iodine concentration maps might be a potential tool for the analysis of lung perfusion in great detail. Our results indicate PBI to be of great value for accurate diagnosis of lung disease in patients as it allows to depict pathological lesions non-invasively at high resolution in 3D. This will especially benefit patients at high risk of complications from invasive lung biopsies such as in the setting of suspected idiopathic pulmonary fibrosis (IPF).Open-Access-Publikationsfonds 202

    Pumpless Extracorporeal Hemadsorption Technique (pEHAT): A Proof-of-Concept Animal Study

    No full text
    Background: Extracorporeal hemadsorption eliminates proinflammatory mediators in critically ill patients with hyperinflammation. The use of a pumpless extracorporeal hemadsorption technique allows its early usage prior to organ failure and the need for an additional medical device. In our animal model, we investigated the feasibility of pumpless extracorporeal hemadsorption over a wide range of mean arterial pressures (MAP). Methods: An arteriovenous shunt between the femoral artery and femoral vein was established in eight pigs. The hemadsorption devices were inserted into the shunt circulation; four pigs received CytoSorb&reg; and four Oxiris&reg; hemadsorbers. Extracorporeal blood flow was measured in a range between mean arterial pressures of 45&ndash;85 mmHg. Mean arterial pressures were preset using intravenous infusions of noradrenaline, urapidil, or increased sedatives. Results: Extracorporeal blood flows remained well above the minimum flows recommended by the manufacturers throughout all MAP steps for both devices. Linear regression resulted in CytoSorb&reg; blood flow [mL/min] = 4.226 &times; MAP [mmHg] &minus; 3.496 (R-square 0.8133) and Oxiris&reg; blood flow [mL/min] = 3.267 &times; MAP [mmHg] + 57.63 (R-square 0.8708), respectively. Conclusion: Arteriovenous pumpless extracorporeal hemadsorption resulted in sufficient blood flows through both the CytoSorb&reg; and Oxiris&reg; devices over a wide range of mean arterial blood pressures and is likely an intriguing therapeutic option in the early phase of septic shock or hyperinflammatory syndromes

    Hyperspectral Imaging for the Evaluation of Microcirculatory Tissue Oxygenation and Perfusion Quality in Haemorrhagic Shock: A Porcine Study

    No full text
    Background: The ultimate goal of haemodynamic therapy is to improve microcirculatory tissue and organ perfusion. Hyperspectral imaging (HSI) has the potential to enable noninvasive microcirculatory monitoring at bedside. Methods: HSI (Tivita&reg; Tissue System) measurements of tissue oxygenation, haemoglobin, and water content in the skin (ear) and kidney were evaluated in a double-hit porcine model of major abdominal surgery and haemorrhagic shock. Animals of the control group (n = 7) did not receive any resuscitation regime. The interventional groups were treated exclusively with either crystalloid (n = 8) or continuous norepinephrine infusion (n = 7). Results: Haemorrhagic shock led to a drop in tissue oxygenation parameters in all groups. These correlated with established indirect markers of tissue oxygenation. Fluid therapy restored tissue oxygenation parameters. Skin and kidney measurements correlated well. High dose norepinephrine therapy deteriorated tissue oxygenation. Tissue water content increased both in the skin and the kidney in response to fluid therapy. Conclusions: HSI detected dynamic changes in tissue oxygenation and perfusion quality during shock and was able to indicate resuscitation effectivity. The observed correlation between HSI skin and kidney measurements may offer an estimation of organ oxygenation impairment from skin monitoring. HSI microcirculatory monitoring could open up new opportunities for the guidance of haemodynamic management

    Hyperspectral imaging for perioperative monitoring of microcirculatory tissue oxygenation and tissue water content in pancreatic surgery — an observational clinical pilot study

    No full text
    Background!#!Hyperspectral imaging (HSI) could provide extended haemodynamic monitoring of perioperative tissue oxygenation and tissue water content to visualize effects of haemodynamic therapy and surgical trauma. The objective of this study was to assess the capacity of HSI to monitor skin microcirculation and possible relations to perioperative organ dysfunction in patients undergoing pancreatic surgery.!##!Methods!#!The hyperspectral imaging TIVITA® Tissue System was used to evaluate superficial tissue oxygenation (StO2), deeper layer tissue oxygenation (near-infrared perfusion index (NPI)), haemoglobin distribution (tissue haemoglobin index (THI)) and tissue water content (tissue water index (TWI)) in 25 patients undergoing pancreatic surgery. HSI parameters were measured before induction of anaesthesia (t1), after induction of anaesthesia (t2), postoperatively before anaesthesia emergence (t3), 6 h after emergence of anaesthesia (t4) and three times daily (08:00, 14:00, 20:00 ± 1 h) at the palm and the fingertips until the second postoperative day (t5-t10). Primary outcome was the correlation of HSI with perioperative organ dysfunction assessed with the perioperative change of SOFA score.!##!Results!#!Two hundred and fifty HSI measurements were performed in 25 patients. Anaesthetic induction led to a significant increase of tissue oxygenation parameters StO2 and NPI (t1-t2). StO2 and NPI decreased significantly from t2 until the end of surgery (t3). THI of the palm showed a strong correlation with haemoglobin levels preoperatively (t2: r = 0.83, p &amp;lt; 0.001) and 6 h postoperatively (t4: r = 0.71, p = 0.001) but not before anaesthesia emergence (t3: r = 0.35, p = 0.10). TWI of the palm and the fingertip rose significantly between pre- and postoperative measurements (t2-t3). Higher blood loss, syndecan level and duration of surgery were associated with a higher increase of TWI. The perioperative change of HSI parameters (∆t1-t3) did not correlate with the perioperative change of the SOFA score.!##!Conclusion!#!This is the first study using HSI skin measurements to visualize tissue oxygenation and tissue water content in patients undergoing pancreatic surgery. HSI was able to measure short-term changes of tissue oxygenation during anaesthetic induction and pre- to postoperatively. TWI indicated a perioperative increase of tissue water content. Perioperative use of HSI could be a useful extension of haemodynamic monitoring to assess the microcirculatory response during haemodynamic therapy and major surgery.!##!Trial registration!#!German Clinical Trial Register, DRKS00017313 on 5 June 2019
    corecore