19 research outputs found

    YY1 Positively Regulates Transcription by Targeting Promoters and Super-Enhancers through the BAF Complex in Embryonic Stem Cells

    Get PDF
    Yin Yang 1 (YY1) regulates early embryogenesis and adult tissue formation. However, the role of YY1 in stem cell regulation remains unclear. YY1 has a Polycomb group (PcG) protein-dependent role in mammalian cells. The PcG-independent functions of YY1 are also reported, although their underlying mechanism is still undefined. This paper reports the role of YY1 and BAF complex in the OCT4-mediated pluripotency network in mouse embryonic stem cells (mESCs). The interaction between YY1 and BAF complex promotes mESC proliferation and pluripotency. Knockdown of Yy1 or Smarca4, the core component of the BAF complex, downregulates pluripotency markers and upregulates several differentiation markers. Moreover, YY1 enriches at both promoter and super-enhancer regions to stimulate transcription. Thus, this study elucidates the role of YY1 in regulating pluripotency through its interaction with OCT4 and the BAF complex and the role of BAF complex in integrating YY1 into the core pluripotency networkThis research was funded by grants from the National Key Research and Development Program (2016YFA [0101700] and 2017YFA0102800), the National Natural Science Foundation of China (31771639), the Guangdong Innovative and Entrepreneurial Research Team Program 2016ZT06S029, the Fundamental Research Funds for the Central Universities (17ykzd04), and Thousand Youth Talents Plan to J.D., the National Natural Science Foundation of China (81703086) to J.W. and the NIH (1R01-GM095942 and 1R21HD087722) and the Empire State Stem Cell funded through the New York State Department of Health (NYSTEM; C028103 and C028121) to J.W.S

    Inhibition of ATG3 ameliorates liver steatosis by increasing mitochondrial function

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is a major health threat in both developed and developing countries and is a precursor of the more advanced liver diseases, including non-alcoholic steatohepatitis (NASH), cirrhosis, and liver cancer. Currently, understanding the multiple and complex molecular pathways implicated in NAFLD onset and progression is a major priority. The transcription factor p63, which belongs to a family comprising p53, p63, and p73,1 is one of many factors that contributes to the development of liver steatosis. The role of p63 as a tumor suppressor and in cell maintenance and renewal is well studied, but we have recently reported that it is also relevant in the control of lipid metabolism.2 p63 encodes multiple isoforms that can be grouped into 2 categories; isoforms with an acidic transactivation domain (TA) and those without this domain (domain negative). The TAp63α isoform is elevated in the liver of animal models of NAFLD as well as in liver biopsies from obese patients with NAFLD. Furthermore, downregulation of p63α in the liver attenuates liver steatosis in diet-induced obese (DIO) mice, while the activation of TAp63α increases hepatic fat content, mediated by the activation of IKKβ and endoplasmic reticulum stress.2 A specialized form of autophagy that degrades lipid droplets, termed “lipophagy”, is a major pathway of lipid mobilization in hepatocytes. Lipophagy is elevated in hepatoma cells upon exposure to free fatty acids,3 and reduces the fatty acid load in mouse hepatocytes.4 Its impairment has been associated with the development of fatty liver and insulin resistance3,5; in contrast, the autophagic flux is increased during the activation of hepatic stellate cells.6 In the present study, we used an unbiased proteomics approach to gain insight into novel proteins modulating lipid metabolism in the liver of mice with genetic knockdown or overexpression of TAp63α. We found that autophagy-related gene 3 (ATG3) was upregulated by TAp63α activation and downregulated after p63α inhibition. ATG3 is elevated in several animal models of NAFLD and in the liver of patients with NAFLD. Genetic overexpression of ATG3 increased the lipid load in hepatocytes, while its repression alleviated TAp63α- and diet-induced steatosis. ATG3 exerted its role in lipid metabolism by regulating SIRT1 and mitochondrial function. Collectively, these findings identify ATG3 as a novel factor implicated in the development of steatosisThis work has been supported by grants from FEDER/Ministerio de Ciencia, Innovación y Universidades-Agencia Estatal de Investigación (PA: RTI2018-095134-B-100; DS and LH: SAF2017-83813-C3-1-R; MLMC: RTC2019-007125-1; CD: BFU2017-87721; ML: RTI2018–101840-B-I00; GS; PID2019-104399RB-I00; RN: RTI2018-099413-B-I00 and RED2018-102379-T; MLMC: SAF2017-87301-R; TCD: RTI2018-096759-A-100), FEDER/Instituto de Salud Carlos III (AGR: PI19/00123), Xunta de Galicia (ML: 2016-PG068; RN: 2015-CP080 and 2016-PG057), Fundación BBVA (RN, GS and MLM), Proyectos Investigación en Salud (MLMC: DTS20/00138), Sistema Universitario Vasco (PA: IT971-16); Fundación Atresmedia (ML and RN), Fundación La Caixa (M.L., R.N. and M.C.), Gilead Sciences International Research Scholars Program in Liver Disease (MVR), Marató TV3 Foundation (DS: 201627), Government of Catalonia (DS: 2017SGR278) and European Foundation for the Study of Diabetes (RN and GS). This research also received funding from the European Community’s H2020 Framework Programme (ERC Synergy Grant-2019-WATCH- 810331, to RN, VP and MS). Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Hepáticas y Digestivas (CIBERehd) and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem). CIBERobn, CIBERehd and CIBERdem are initiatives of the Instituto de Salud Carlos III (ISCIII) of Spain which is supported by FEDER funds. We thank MINECO for the Severo Ochoa Excellence Accreditation to CIC bioGUNE (SEV-2016-0644)S

    Treatment with tocilizumab or corticosteroids for COVID-19 patients with hyperinflammatory state: a multicentre cohort study (SAM-COVID-19)

    Get PDF
    Objectives: The objective of this study was to estimate the association between tocilizumab or corticosteroids and the risk of intubation or death in patients with coronavirus disease 19 (COVID-19) with a hyperinflammatory state according to clinical and laboratory parameters. Methods: A cohort study was performed in 60 Spanish hospitals including 778 patients with COVID-19 and clinical and laboratory data indicative of a hyperinflammatory state. Treatment was mainly with tocilizumab, an intermediate-high dose of corticosteroids (IHDC), a pulse dose of corticosteroids (PDC), combination therapy, or no treatment. Primary outcome was intubation or death; follow-up was 21 days. Propensity score-adjusted estimations using Cox regression (logistic regression if needed) were calculated. Propensity scores were used as confounders, matching variables and for the inverse probability of treatment weights (IPTWs). Results: In all, 88, 117, 78 and 151 patients treated with tocilizumab, IHDC, PDC, and combination therapy, respectively, were compared with 344 untreated patients. The primary endpoint occurred in 10 (11.4%), 27 (23.1%), 12 (15.4%), 40 (25.6%) and 69 (21.1%), respectively. The IPTW-based hazard ratios (odds ratio for combination therapy) for the primary endpoint were 0.32 (95%CI 0.22-0.47; p < 0.001) for tocilizumab, 0.82 (0.71-1.30; p 0.82) for IHDC, 0.61 (0.43-0.86; p 0.006) for PDC, and 1.17 (0.86-1.58; p 0.30) for combination therapy. Other applications of the propensity score provided similar results, but were not significant for PDC. Tocilizumab was also associated with lower hazard of death alone in IPTW analysis (0.07; 0.02-0.17; p < 0.001). Conclusions: Tocilizumab might be useful in COVID-19 patients with a hyperinflammatory state and should be prioritized for randomized trials in this situatio

    Hepatic levels of S-adenosylmethionine regulate the adaptive response to fasting

    Get PDF
    26 p.-6 fig.-1 tab.-1 graph. abst.There has been an intense focus to uncover the molecular mechanisms by which fasting triggers the adaptive cellular responses in the major organs of the body. Here, we show that in mice, hepatic S-adenosylmethionine (SAMe)—the principal methyl donor—acts as a metabolic sensor of nutrition to fine-tune the catabolic-fasting response by modulating phosphatidylethanolamine N-methyltransferase (PEMT) activity, endoplasmic reticulum-mitochondria contacts, β-oxidation, and ATP production in the liver, together with FGF21-mediated lipolysis and thermogenesis in adipose tissues. Notably, we show that glucagon induces the expression of the hepatic SAMe-synthesizing enzyme methionine adenosyltransferase α1 (MAT1A), which translocates to mitochondria-associated membranes. This leads to the production of this metabolite at these sites, which acts as a brake to prevent excessive β-oxidation and mitochondrial ATP synthesis and thereby endoplasmic reticulum stress and liver injury. This work provides important insights into the previously undescribed function of SAMe as a new arm of the metabolic adaptation to fasting.M.V.-R. is supported by Proyecto PID2020-119486RB-100 (funded by MCIN/AEI/10.13039/501100011033), Gilead Sciences International Research Scholars Program in Liver Disease, Acción Estratégica Ciberehd Emergentes 2018 (ISCIII), Fundación BBVA, HORIZON-TMA-MSCA-Doctoral Networks 2021 (101073094), and Redes de Investigación 2022 (RED2022-134485-T). M.L.M.-C. is supported by La CAIXA Foundation (LCF/PR/HP17/52190004), Proyecto PID2020-117116RB-I00 (funded by MCIN/AEI/10.13039/501100011033), Ayudas Fundación BBVA a equipos de investigación científica (Umbrella 2018), and AECC Scientific Foundation (Rare Cancers 2017). A.W. is supported by RTI2018-097503-B-I00 and PID2021-127169OB-I00, (funded by MCIN/AEI/10.13039/501100011033) and by “ERDF A way of making Europe,” Xunta de Galicia (Ayudas PRO-ERC), Fundación Mutua Madrileña, and European Community’s H2020 Framework Programme (ERC Consolidator grant no. 865157 and MSCA Doctoral Networks 2021 no. 101073094). C.M. is supported by CIBERNED. P.A. is supported by Ayudas para apoyar grupos de investigación del sistema Universitario Vasco (IT1476-22), PID2021-124425OB-I00 (funded by MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe,” MCI/UE/ISCiii [PMP21/00080], and UPV/EHU [COLAB20/01]). M.F. and M.G.B. are supported by PID2019-105739GB-I00 and PID2020-115472GB-I00, respectively (funded by MCIN/AEI/10.13039/501100011033). M.G.B. is supported by Xunta de Galicia (ED431C 2019/013). C.A., T.L.-D., and J.B.-V. are recipients of pre-doctoral fellowships from Xunta de Galicia (ED481A-2020/046, ED481A-2018/042, and ED481A 2021/244, respectively). T.C.D. is supported by Fundación Científica AECC. A.T.-R. is a recipient of a pre-doctoral fellowship from Fundación Científica AECC. S.V.A. and C.R. are recipients of Margarita Salas postdoc grants under the “Plan de Recuperación Transformación” program funded by the Spanish Ministry of Universities with European Union’s NextGeneration EU funds (2021/PER/00020 and MU-21-UP2021-03071902373A, respectively). T.C.D., A.S.-R., and M.T.-C. are recipients of Ayuda RYC2020-029316-I, PRE2019/088960, and BES-2016/078493, respectively, supported by MCIN/AEI/10.13039/501100011033 and by El FSE invierte en tu futuro. S.L.-O. is a recipient of a pre-doctoral fellowship from the Departamento de Educación del Gobierno Vasco (PRE_2018_1_0372). P.A.-G. is recipient of a FPU pre-doctoral fellowship from the Ministry of Education (FPU19/02704). CIC bioGUNE is supported by Ayuda CEX2021-001136-S financiada por MCIN/AEI/10.13039/501100011033. A.B.-C. was funded by predoctoral contract PFIS (FI19/00240) from Instituto de Salud Carlos III (ISCIII) co-funded by Fondo Social Europeo (FSE), and A.D.-L. was funded by contract Juan Rodés (JR17/00016) from ISCIII. A.B.-C. is a Miguel Servet researcher (CPII22/00008) from ISCIII.Peer reviewe

    La biblioteca escolar como recurso educativo

    No full text
    Resumen basado en la publicaciónEl objetivo de esta obra es hacer de la biblioteca escolar un espacio de documentación, información y formación integrado plenamente en las prácticas educativas del aula y del centro. El texto recoge el Plan de Actuación para el desarrollo de las Bibliotecas Escolares en Asturias, así como las experiencias llevadas a cabo en Centros Educativos del Principado de Asturias dentro del Programa Asturias Espacio Educativo. La obra se divide en tres módulos: organización y gestión de la biblioteca escolar, dinamización de la biblioteca escolar y relación biblioteca escolar - biblioteca pública. Además de las experiencias que ilustran cada uno de estos módulos, también están disponibles otras experiencias en el CD-ROM que acompaña a la obra en el que además, se incluyen referencias bibliográficas así como diversos enlaces sobre bibliotecas escolares.AsturiasUniversidad de Oviedo. Facultad de Ciencias de la Educación; Calle Aniceto Sela s. n.; 33005 Oviedo; +34985103215; +34985103214;ES

    Registro Español de Ablación con Catéter. XVII Informe Oficial de la Sección de Electrofisiología y Arritmias de la Sociedad Española de Cardiología (2017)

    No full text
    corecore