182 research outputs found

    Utilisation de l'expérience de drainage à pas de pression multiples pour la détermination des fonctions hydrauliques du sol par la méthode inverse : résultats expérimentaux

    Get PDF
    La méthode de drainage à pas de pression multiples, combinée avec la méthode inverse, permet la détermination des fonctions hydrauliques du sol (têta(h) et K(h)) simultanément. Cependant, le choix des fonctions décrivant têta(h) et K(h) du sol est d'une importance capitale dans cette méthode. Les résultats expérimentaux montrent que le modèle de CAMPBELL (1974) dans sa version améliorée par HUTSON et CASS (1987) permet une description raisonnable du processus du drainage en fonction du temps et correspondant à des pas de pression croissants. Les courbes de rétention d'eau déduites des paramètres optimisés par la méthode inverse ont les mêmes allures que celles déterminées par la méthode standard (bac de sable et cellules à basses et hautes pressions). Ces résultats sont plus représentatifs de la réalité lorsque les paramètres têta(s) et K(s) sont fixes et égaux aux valeurs expérimentales, avec une précision sensiblement la même dans les cas d'optimisation, où têta(s) est fixe et têta(s) et K(s) fixes et égaux aux valeurs expérimentales; le premier cas où seulement le paramètre têta(s) est fixe est suggéré (il y a moins de paramètres à mesurer). (Résumé d'auteur

    Utilisation de l'expérience de drainage à pas de pression multiples pour la détermination des fonctions hydrauliques du sol par la méthode inverse : présentation et évaluation de la méthode

    Get PDF
    L'optimisation des paramètres des fonctions décrivant les propriétés hydrauliques du sol têta(h) et K(h), basée sur les résultats de l'expérience de drainage interne à pas de pression multiples est une méthode prometteuse. En effet, cette dernière fournit suffisamment d'informations sur les propriétés hydrauliques essentielles d'un sol. Le modèle utilisé pour décrire les relations entre la teneur en eau volumique têta et la pression de l'eau h, d'une part, et entre la conductivité hydraulique K et h, d'autre part, est celui de CAMPBELL (1974) dans sa version améliorée par HUTSON et CASS (1987). Les résultats montrent que ce modèle décrit raisonnablement le processus du drainage en fonction du temps correspondant à des pas de pressions croissantes. La solution de la méthode d'identification des paramètres est unique tant que les valeurs assignées aux paramètres au départ sont proches (plus ou moins 20 %) de celles du sol étudié. L'effet d'une erreur expérimentale allant jusqu'à 10 % n'est pas significatif pour les résultats des paramètres optimisés. (Résumé d'auteur

    Comparative flood damage model assessment: towards a European approach

    Get PDF
    There is a wide variety of flood damage models in use internationally, differing substantially in their approaches and economic estimates. Since these models are being used more and more as a basis for investment and planning decisions on an increasingly large scale, there is a need to reduce the uncertainties involved and develop a harmonised European approach, in particular with respect to the EU Flood Risks Directive. In this paper we present a qualitative and quantitative assessment of seven flood damage models, using two case studies of past flood events in Germany and the United Kingdom. The qualitative analysis shows that modelling approaches vary strongly, and that current methodologies for estimating infrastructural damage are not as well developed as methodologies for the estimation of damage to buildings. The quantitative results show that the model outcomes are very sensitive to uncertainty in both vulnerability (i.e. depth–damage functions) and exposure (i.e. asset values), whereby the first has a larger effect than the latter. We conclude that care needs to be taken when using aggregated land use data for flood risk assessment, and that it is essential to adjust asset values to the regional economic situation and property characteristics. We call for the development of a flexible but consistent European framework that applies best practice from existing models while providing room for including necessary regional adjustments

    Comparison of three stream tube models predicting field-scale solute transport

    No full text
    International audienceIn this paper the relation between local- and field-scale solute transport parameters in an unsaturated soil profile is investigated. At two experimental sites, local-scale steady-state solute transport was measured in-situ using 120 horizontally installed TDR probes at 5 depths. Local-scale solute transport parameters determined from BTCs were used to predict field-scale solute transport using stochastic stream tube models (STM). Local-scale solute transport was described by two transport models: (1) the convection-dispersion transport model (CDE), and (2) the stochastic convective lognormat transfer model (CLT). The parameters of the CDE-model were found to be lognormally distributed, whereas the parameters of the CLT model were normally distributed. Local-scale solute transport heterogeneity within the measurement volume of a TDR-probe was an important factor causing field-scale solute dispersion. The study of the horizontal scale-dependency revealed that the variability in the solute transport parameters contributes more to the field-scale dispersion at deeper depths than at depths near the surface. Three STMs were used to upscale the local transport parameters: (i) the stochastic piston flow STM-I assuming local piston flow transport, (ii) the convective-dispersive STM-II assuming local CDE transport, and (iii) the stochastic convective lognormal STM-III assuming local CLT. The STM-I considerably underpredicted the field-scale solute dispersion indicating that local-scale dispersion processes, which are captured within the measurement volume of the TDR-probe, are important to predict field-scale solute transport. STM-II and STM-III both described the field-scale breakthrough curves (BTC) accurately if depth dependent parameters were used. In addition, a reasonable description of the horizontal variance of the local BTCs was found. STM-III was (more) superior to STM-II if only one set of parameters from one depth is used to predict the field-scale solute BTCs at several depths. This indicates that the local-scale solute transport process, as measured with TDR in this study, is in agreement with the CLT-hypothesis

    Recruitment, augmentation and apoptosis of rat osteoclasts in 1,25-(OH)2D3 response to short-term treatment with 1,25-dihydroxyvitamin D3in vivo

    Get PDF
    Background Although much is known about the regulation of osteoclast (OC) formation and activity, little is known about OC senescence. In particular, the fate of of OC seen after 1,25-(OH)2D3 administration in vivo is unclear. There is evidence that the normal fate of OC is to undergo apoptosis (programmed cell death). We have investigated the effect of short-term application of high dose 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on OC apoptosis in an experimental rat model. Methods OC recruitment, augmentation and apoptosis was visualised and quantitated by staining histochemically for tartrate resistant acid phosphatase (TRAP), double staining for TRAP/ED1 or TRAP/DAPI, in situ DNA fragmentation end labelling and histomorphometric analysis. Results Short-term treatment with high-dose 1,25-(OH)2D3 increased the recruitment of OC precursors in the bone marrow resulting in a short-lived increase in OC numbers. This was rapidly followed by an increase in the number of apoptotic OC and their subsequent removal. The response of OC to 1,25-(OH)2D3 treatment was dose and site dependent; higher doses producing stronger, more rapid responses and the response in the tibiae being consistently stronger and more rapid than in the vertebrae. Conclusions This study demonstrates that (1) after recruitment, OC are removed from the resorption site by apoptosis (2) the combined use of TRAP and ED1 can be used to identify OC and their precursors in vivo (3) double staining for TRAP and DAPI or in situ DNA fragmentation end labelling can be used to identify apoptotic OC in vivo

    African heritage sites threatened as sea-level rise accelerates

    Get PDF
    The African coast contains heritage sites of ‘Outstanding Universal Value’ that face increasing risk from anthropogenic climate change. Here, we generated a database of 213 natural and 71 cultural African heritage sites to assess exposure to coastal flooding and erosion under moderate (RCP 4.5) and high (RCP 8.5) greenhouse gas emission scenarios. Currently, 56 sites (20%) are at risk from a 1-in-100-year coastal extreme event, including the iconic ruins of Tipasa (Algeria) and the North Sinai Archaeological Sites Zone (Egypt). By 2050, the number of exposed sites is projected to more than triple, reaching almost 200 sites under high emissions. Emissions mitigation from RCP 8.5 to RCP 4.5 reduces the number of very highly exposed sites by 25%. These findings highlight the urgent need for increased climate change adaptation for heritage sites in Africa, including governance and management approaches, site-specific vulnerability assessments, exposure monitoring, and protection strategies

    Uncertainty and Bias in Global to Regional Scale Assessments of Current and Future Coastal Flood Risk

    Get PDF
    This study provides a literature-based comparative assessment of uncertainties and biases in global to world-regional scale assessments of current and future coastal flood risks, considering mean and extreme sea-level hazards, the propagation of these into the floodplain, people and coastal assets exposed, and their vulnerability. Globally, by far the largest bias is introduced by not considering human adaptation, which can lead to an overestimation of coastal flood risk in 2100 by up to factor 1300. But even when considering adaptation, uncertainties in how coastal societies will adapt to sea-level rise dominate with a factor of up to 27 all other uncertainties. Other large uncertainties that have been quantified globally are associated with socio-economic development (factors 2.3–5.8), digital elevation data (factors 1.2–3.8), ice sheet models (factor 1.6–3.8) and greenhouse gas emissions (factors 1.6–2.1). Local uncertainties that stand out but have not been quantified globally, relate to depth-damage functions, defense failure mechanisms, surge and wave heights in areas affected by tropical cyclones (in particular for large return periods), as well as nearshore interactions between mean sea-levels, storm surges, tides and waves. Advancing the state-of-the-art requires analyzing and reporting more comprehensively on underlying uncertainties, including those in data, methods and adaptation scenarios. Epistemic uncertainties in digital elevation, coastal protection levels and depth-damage functions would be best reduced through open community-based efforts, in which many scholars work together in collecting and validating these data

    U.S. IOOS coastal and ocean modeling testbed : inter-model evaluation of tides, waves, and hurricane surge in the Gulf of Mexico

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 118 (2013): 5129–5172, doi:10.1002/jgrc.20376.A Gulf of Mexico performance evaluation and comparison of coastal circulation and wave models was executed through harmonic analyses of tidal simulations, hindcasts of Hurricane Ike (2008) and Rita (2005), and a benchmarking study. Three unstructured coastal circulation models (ADCIRC, FVCOM, and SELFE) validated with similar skill on a new common Gulf scale mesh (ULLR) with identical frictional parameterization and forcing for the tidal validation and hurricane hindcasts. Coupled circulation and wave models, SWAN+ADCIRC and WWMII+SELFE, along with FVCOM loosely coupled with SWAN, also validated with similar skill. NOAA's official operational forecast storm surge model (SLOSH) was implemented on local and Gulf scale meshes with the same wind stress and pressure forcing used by the unstructured models for hindcasts of Ike and Rita. SLOSH's local meshes failed to capture regional processes such as Ike's forerunner and the results from the Gulf scale mesh further suggest shortcomings may be due to a combination of poor mesh resolution, missing internal physics such as tides and nonlinear advection, and SLOSH's internal frictional parameterization. In addition, these models were benchmarked to assess and compare execution speed and scalability for a prototypical operational simulation. It was apparent that a higher number of computational cores are needed for the unstructured models to meet similar operational implementation requirements to SLOSH, and that some of them could benefit from improved parallelization and faster execution speed.This project was supported by NOAA via the U.S. IOOS Office (award: NA10NOS0120063 and NA11NOS0120141

    Comparison of weather station and climate reanalysis data for modelling temperature-related mortality

    Get PDF
    Epidemiological analyses of health risks associated with non-optimal temperature are traditionally based on ground observations from weather stations that offer limited spatial and temporal coverage. Climate reanalysis represents an alternative option that provide complete spatio-temporal exposure coverage, and yet are to be systematically explored for their suitability in assessing temperature-related health risks at a global scale. Here we provide the first comprehensive analysis over multiple regions to assess the suitability of the most recent generation of reanalysis datasets for health impact assessments and evaluate their comparative performance against traditional station-based data. Our findings show that reanalysis temperature from the last ERA5 products generally compare well to station observations, with similar non-optimal temperature-related risk estimates. However, the analysis offers some indication of lower performance in tropical regions, with a likely underestimation of heat-related excess mortality. Reanalysis data represent a valid alternative source of exposure variables in epidemiological analyses of temperature-related risk
    • …
    corecore