200 research outputs found
Does study duration have opposite effects on recognition and repetition priming?
We investigated whether manipulating the duration for which an item is studied has opposite effects on recognition memory and repetition priming, as has been reported by Voss and Gonsalves (2010). Robust evidence of this would support the idea that distinct explicit and implicit memory systems drive recognition and priming, and would constitute evidence against a single-system model (Berry, Shanks, Speekenbrink, & Henson, 2012). Across seven experiments using study durations ranging from 40 ms to 2250 ms, and two different priming tasks (a classification task in Experiments 1a, 2a, 3a, and 4, and a continuous identification with recognition (CID-R) task in Experiments 1b, 2b, and 3b), we found that although a longer study duration improved subsequent recognition in each experiment, there was either no detectable effect on priming (Experiments 1a, 2a, and 4) or a similar effect to that on recognition, albeit smaller in magnitude (Experiments 1b, 2b, 3a, and 3b). Our findings (1) question whether study duration has opposite effects on recognition and priming, and (2) are robustly consistent with a single-system model of recognition and priming
Ligation of Macrophage FcΞ³ Receptors Recapitulates the Gene Expression Pattern of Vulnerable Human Carotid Plaques
Stroke is a leading cause of death in the United States. As βΌ60% of strokes result from carotid plaque rupture, elucidating the mechanisms that underlie vulnerability is critical for therapeutic intervention. We tested the hypothesis that stable and vulnerable human plaques differentially express genes associated with matrix degradation. Examination established that femoral, and the distal region of carotid, plaques were histologically stable while the proximal carotid plaque regions were vulnerable. Quantitative RT-PCR was used to compare expression of 22 genes among these tissues. Distal carotid and femoral gene expression was not significantly different, permitting the distal carotid segments to be used as a paired control for their corresponding proximal regions. Analysis of the paired plaques revealed differences in 16 genes that impact plaque stability: matrix metalloproteinases (MMP, higher in vulnerable), MMP modulators (inhibitors: lower, activators: higher in vulnerable), activating Fc receptors (FcΞ³R, higher in vulnerable) and FcΞ³R signaling molecules (higher in vulnerable). Surprisingly, the relative expression of smooth muscle cell and macrophage markers in the three plaque types was not significantly different, suggesting that macrophage distribution and/or activation state correlates with (in)stability. Immunohistochemistry revealed that macrophages and smooth muscle cells localize to distinct and non-overlapping regions in all plaques. MMP protein localized to macrophage-rich regions. In vitro, treatment of macrophages with immune complexes, but not oxidized low density lipoprotein, C-reactive protein, or TNF-Ξ±, induced a gene expression profile similar to that of the vulnerable plaques. That ligation of FcΞ³R recapitulates the pattern of gene expression in vulnerable plaques suggests that the FcΞ³R β macrophage activation pathway may play a greater role in human plaque vulnerability than previously appreciated
The Epistemic Status of Processing Fluency as Source for Judgments of Truth
This article combines findings from cognitive psychology on the role of processing fluency in truth judgments with epistemological theory on justification of belief. We first review evidence that repeated exposure to a statement increases the subjective ease with which that statement is processed. This increased processing fluency, in turn, increases the probability that the statement is judged to be true. The basic question discussed here is whether the use of processing fluency as a cue to truth is epistemically justified. In the present analysis, based on Bayesβ Theorem, we adopt the reliable-process account of justification presented by Goldman (1986) and show that fluency is a reliable cue to truth, under the assumption that the majority of statements one has been exposed to are true. In the final section, we broaden the scope of this analysis and discuss how processing fluency as a potentially universal cue to judged truth may contribute to cultural differences in commonsense beliefs
Two Distinct Modes of Hypoosmotic Medium-Induced Release of Excitatory Amino Acids and Taurine in the Rat Brain In Vivo
A variety of physiological and pathological factors induce cellular swelling in the brain. Changes in cell volume activate several types of ion channels, which mediate the release of inorganic and organic osmolytes and allow for compensatory cell volume decrease. Volume-regulated anion channels (VRAC) are thought to be responsible for the release of some of organic osmolytes, including the excitatory neurotransmitters glutamate and aspartate. In the present study, we compared the in vivo properties of the swelling-activated release of glutamate, aspartate, and another major brain osmolyte taurine. Cell swelling was induced by perfusion of hypoosmotic (low [NaCl]) medium via a microdialysis probe placed in the rat cortex. The hypoosmotic medium produced several-fold increases in the extracellular levels of glutamate, aspartate and taurine. However, the release of the excitatory amino acids differed from the release of taurine in several respects including: (i) kinetic properties, (ii) sensitivity to isoosmotic changes in [NaCl], and (iii) sensitivity to hydrogen peroxide, which is known to modulate VRAC. Consistent with the involvement of VRAC, hypoosmotic medium-induced release of the excitatory amino acids was inhibited by the anion channel blocker DNDS, but not by the glutamate transporter inhibitor TBOA or Cd2+, which inhibits exocytosis. In order to elucidate the mechanisms contributing to taurine release, we studied its release properties in cultured astrocytes and cortical synaptosomes. Similarities between the results obtained in vivo and in synaptosomes suggest that the swelling-activated release of taurine in vivo may be of neuronal origin. Taken together, our findings indicate that different transport mechanisms and/or distinct cellular sources mediate hypoosmotic medium-induced release of the excitatory amino acids and taurine in vivo
Current opinion on the role of testosterone in the development of prostate cancer: a dynamic model
Background: Since the landmark study conducted by Huggins and Hodges in 1941, a failure to distinguish between the role of testosterone in prostate cancer development and progression has led to the prevailing opinion that high levels of testosterone increase the risk of prostate cancer. To date, this claim remains unproven.
Presentation of the Hypothesis: We present a novel dynamic mode of the relationship between testosterone and prostate cancer by hypothesizing that the magnitude of age-related declines in testosterone, rather than a static level of testosterone measured at a single point, may trigger and promote the development of prostate cancer.
Testing of the Hypothesis: Although not easily testable currently, prospective cohort studies with population-representative samples and repeated measurements of testosterone or retrospective cohorts with stored blood samples from different ages are warranted in future to test the hypothesis.
Implications of the Hypothesis: Our dynamic model can satisfactorily explain the observed age patterns of prostate cancer incidence, the apparent conflicts in epidemiological findings on testosterone and risk of prostate cancer, racial disparities in prostate cancer incidence, risk factors associated with prostate cancer, and the role of testosterone in prostate cancer progression. Our dynamic model may also have implications for testosterone replacement therapy
Least area incompressible surfaces in 3-manifolds
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46610/1/222_2005_Article_BF02095997.pd
The Influence of Object Relative Size on Priming and Explicit Memory
We investigated the effects of object relative size on priming and explicit memory for color photos of common objects. Participants were presented with color photos of pairs of objects displayed in either appropriate or inappropriate relative sizes. Implicit memory was assessed by speed of object size ratings whereas explicit memory was assessed by an old/new recognition test. Study-to-test changes in relative size reduced both priming and explicit memory and had large effects for objects displayed in large vs. small size at test. Our findings of substantial size-specific influences on priming with common objects under some but not other conditions are consistent with instance views of object perception and priming but inconsistent with structural description views
Host-Adaptation of Francisella tularensis Alters the Bacterium's Surface-Carbohydrates to Hinder Effectors of Innate and Adaptive Immunity
The gram-negative bacterium Francisella tularensis survives in arthropods, fresh water amoeba, and mammals with both intracellular and extracellular phases and could reasonably be expected to express distinct phenotypes in these environments. The presence of a capsule on this bacterium has been controversial with some groups finding such a structure while other groups report that no capsule could be identified. Previously we reported in vitro culture conditions for this bacterium which, in contrast to typical methods, yielded a bacterial phenotype that mimics that of the bacterium's mammalian, extracellular phase.SDS-PAGE and carbohydrate analysis of differentially-cultivated F. tularensis LVS revealed that bacteria displaying the host-adapted phenotype produce both longer polymers of LPS O-antigen (OAg) and additional HMW carbohydrates/glycoproteins that are reduced/absent in non-host-adapted bacteria. Analysis of wildtype and OAg-mutant bacteria indicated that the induced changes in surface carbohydrates involved both OAg and non-OAg species. To assess the impact of these HMW carbohydrates on the access of outer membrane constituents to antibody we used differentially-cultivated bacteria in vitro to immunoprecipitate antibodies directed against outer membrane moieties. We observed that the surface-carbohydrates induced during host-adaptation shield many outer membrane antigens from binding by antibody. Similar assays with normal mouse serum indicate that the induced HMW carbohydrates also impede complement deposition. Using an in vitro macrophage infection assay, we find that the bacterial HMW carbohydrate impedes TLR2-dependent, pro-inflammatory cytokine production by macrophages. Lastly we show that upon host-adaptation, the human-virulent strain, F. tularensis SchuS4 also induces capsule production with the effect of reducing macrophage-activation and accelerating tularemia pathogenesis in mice.F. tularensis undergoes host-adaptation which includes production of multiple capsular materials. These capsules impede recognition of bacterial outer membrane constituents by antibody, complement, and Toll-Like Receptor 2. These changes in the host-pathogen interface have profound implications for pathogenesis and vaccine development
- β¦