24 research outputs found

    Stripes in Quantum Hall Double Layer Systems

    Full text link
    We present results of a study of double layer quantum Hall systems in which each layer has a high-index Landau level that is half-filled. Hartree-Fock calculations indicate that, above a critical layer separation, the system becomes unstable to the formation of a unidirectional coherent charge density wave (UCCDW), which is related to stripe states in single layer systems. The UCCDW state supports a quantized Hall effect when there is tunneling between layers, and is {\it always} stable against formation of an isotropic Wigner crystal for Landau indices N1N \ge 1. The state does become unstable to the formation of modulations within the stripes at large enough layer separation. The UCCDW state supports low-energy modes associated with interlayer coherence. The coherence allows the formation of charged soliton excitations, which become gapless in the limit of vanishing tunneling. We argue that this may result in a novel {\it ``critical Hall state''}, characterized by a power law IVI-V in tunneling experiments.Comment: 10 pages, 8 figures include

    Dynamics of quantum Hall stripes in double-quantum-well systems

    Full text link
    The collective modes of stripes in double layer quantum Hall systems are computed using the time-dependent Hartree-Fock approximation. It is found that, when the system possesses spontaneous interlayer coherence, there are two gapless modes, one a phonon associated with broken translational invariance, the other a pseudospin-wave associated with a broken U(1) symmetry. For large layer separations the modes disperse weakly for wavevectors perpendicular to the stripe orientation, indicating the system becomes akin to an array of weakly coupled one-dimensional XY systems. At higher wavevectors the collective modes develop a roton minimum associated with a transition out of the coherent state with further increasing layer separation. A spin wave model of the system is developed, and it is shown that the collective modes may be described as those of a system with helimagnetic ordering.Comment: 16 pages including 7 postscript figure

    Role of disorder in half-filled high Landau levels

    Full text link
    We study the effects of disorder on the quantum Hall stripe phases in half-filled high Landau levels using exact numerical diagonalization. We show that, in the presence of weak disorder, a compressible, striped charge density wave, becomes the true ground state. The projected electron density profile resembles that of a smectic liquid. With increasing disorder strength W, we find that there exists a critical value, W_c \sim 0.12 e^2/\epsilon l, where a transition/crossover to an isotropic phase with strong local electron density fluctuations takes place. The many-body density of states are qualitatively distinguishable in these two phases and help elucidate the nature of the transition.Comment: 4 pages, 4 figure

    Hartree-Fock Theory of Hole Stripe States

    Full text link
    We report on Hartree-Fock theory results for stripe states of two-dimensional hole systems in quantum wells grown on GaAs (311)A substrates. We find that the stripe orientation energy has a rich dependence on hole density, and on in-plane field magnitude and orientation. Unlike the electron case, the orientation energy is non-zero for zero in-plane field, and the ground state orientation can be either parallel or perpendicular to a finite in-plane field. We predict an orientation reversal transition in in-plane fields applied along the [2ˉ33]\lbrack\bar{2}33\rbrack direction.Comment: 5 pages including 4 figure

    An Investigation of Orientational Symmetry-Breaking Mechanisms in High Landau Levels

    Get PDF
    The principal axes of the recently discovered anisotropic phases of 2D electron systems at high Landau level occupancy are consistently oriented relative to the crystal axes of the host semiconductor. The nature of the native rotational symmetry breaking field responsible for this preferential orientation remains unknown. Here we report on experiments designed to investigate the origin and magnitude of this symmetry breaking field. Our results suggest that neither micron-scale surface roughness features nor the precise symmetry of the quantum well potential confining the 2D system are important factors. By combining tilted field transport measurements with detailed self-consistent calculations we estimate that the native anisotropy energy, whatever its origin, is typically ~ 1 mK per electron.Comment: Reference added, minor notational changes; final published versio

    New collective states of 2D electrons in high Landau levels

    Get PDF
    A brief summary of the emerging evidence for a new class of collective states of two-dimensional electrons in partially occupied excited Landau levels is presented. Among the most dramatic phenomena described are the large anisotropies of the resistivity observed at very low temperatures near half-filling of the third and higher Landau levels and the non-linear character of the re-entrant integer quantized Hall states in the flanks of the same levels. The degree to which these findings support recent theoretical predictions of charge density wave ground states is discussed and a preliminary comparison to recent transport theories is made.Comment: To be published in Physica E, as part of the proceedings of the 11th International Winterschool on New Developments in Solid State Physics held in Mauterndorf, Austria, February, 2000. 25 pages and 9 figures in a single pdf fil

    From High to Low Temperature The Revival of Sodium Beta Alumina for Sodium Solid State Batteries

    Get PDF
    Sodium based batteries are promising post lithium ion technologies because sodium offers a specific capacity of 1166 amp; 8197;mAh amp; 8201;g amp; 8722;1 and a potential of amp; 8722;2.71 amp; 8197;V vs. the standard hydrogen electrode. The solid electrolyte sodium beta alumina shows a unique combination of properties because it exhibits high ionic conductivity, as well as mechanical stability and chemical stability against sodium. Pairing a sodium negative electrode and sodium beta alumina with Na ion type positive electrodes, therefore, results in a promising solid state cell concept. This review highlights the opportunities and challenges of using sodium beta alumina in batteries operating from medium to low temperatures 200 amp; 8201; C 20 amp; 8201; C . Firstly, the recent progress in sodium beta alumina fabrication and doping methods are summarized. We discuss strategies for modifying the interfaces between sodium beta alumina and both the positive and negative electrodes. Secondly, recent achievements in designing full cells with sodium beta alumina are summarized and compared. The review concludes with an outlook on future research directions. Overall, this review shows the promising prospects of using sodium beta alumina for the development of solid state batterie

    New insulating phases of two-dimensional electrons in high Landau levels: observation of sharp thresholds to conduction

    Get PDF
    The intriguing re-entrant integer quantized Hall states recently discovered in high Landau levels of high-mobility 2D electron systems are found to exhibit extremely non-linear transport. At small currents these states reflect insulating behavior of the electrons in the uppermost Landau level. At larger currents, however, a discontinuous and hysteretic transition to a conducting state is observed. These phenomena, found only in very narrow magnetic field ranges, are suggestive of the depinning of a charge density wave state, but other explanations can also be constructed.Comment: 5 pages, 5 figure

    Topological Defects, Orientational Order, and Depinning of the Electron Solid in a Random Potential

    Full text link
    We report on the results of molecular dynamics simulation (MD) studies of the classical two-dimensional electron crystal in the presence disorder. Our study is motivated by recent experiments on this system in modulation doped semiconductor systems in very strong magnetic fields, where the magnetic length is much smaller than the average interelectron spacing a0a_0, as well as by recent studies of electrons on the surface of helium. We investigate the low temperature state of this system using a simulated annealing method. We find that the low temperature state of the system always has isolated dislocations, even at the weakest disorder levels investigated. We also find evidence for a transition from a hexatic glass to an isotropic glass as the disorder is increased. The former is characterized by quasi-long range orientational order, and the absence of disclination defects in the low temperature state, and the latter by short range orientational order and the presence of these defects. The threshold electric field is also studied as a function of the disorder strength, and is shown to have a characteristic signature of the transition. Finally, the qualitative behavior of the electron flow in the depinned state is shown to change continuously from an elastic flow to a channel-like, plastic flow as the disorder strength is increased.Comment: 31 pages, RevTex 3.0, 15 figures upon request, accepted for publication in Phys. Rev. B., HAF94MD

    Theory of the Quantum Hall Smectic Phase II: Microscopic Theory

    Full text link
    We present a microscopic derivation of the hydrodynamic theory of the Quantum Hall smectic or stripe phase of a two-dimensional electron gas in a large magnetic field. The effective action of the low energy is derived here from a microscopic picture by integrating out high energy excitations with a scale of the order the cyclotron energy.The remaining low-energy theory can be expressed in terms of two canonically conjugate sets of degrees of freedom: the displacement field, that describes the fluctuations of the shapes of the stripes, and the local charge fluctuations on each stripe.Comment: 20 pages, RevTex, 3 figures, second part of cond-mat/0105448 New and improved Introduction. Final version as it will appear in Physical Review
    corecore