166 research outputs found
The Atacama Cosmology Telescope: Two-Season ACTPol Spectra and Parameters
We present the temperature and polarization angular power spectra measured by
the Atacama Cosmology Telescope Polarimeter (ACTPol). We analyze night-time
data collected during 2013-14 using two detector arrays at 149 GHz, from 548
deg of sky on the celestial equator. We use these spectra, and the spectra
measured with the MBAC camera on ACT from 2008-10, in combination with Planck
and WMAP data to estimate cosmological parameters from the temperature,
polarization, and temperature-polarization cross-correlations. We find the new
ACTPol data to be consistent with the LCDM model. The ACTPol
temperature-polarization cross-spectrum now provides stronger constraints on
multiple parameters than the ACTPol temperature spectrum, including the baryon
density, the acoustic peak angular scale, and the derived Hubble constant.
Adding the new data to planck temperature data tightens the limits on damping
tail parameters, for example reducing the joint uncertainty on the number of
neutrino species and the primordial helium fraction by 20%.Comment: 23 pages, 25 figure
SCUBA-2 Ultra Deep Imaging EAO Survey (STUDIES). II. Structural Properties and Near-infrared Morphologies of Faint Submillimeter Galaxies
We present structural parameters and morphological properties of faint 450 μm selected submillimeter galaxies (SMGs) from the JCMT Large Program, STUDIES, in the COSMOS-CANDELS region. Their properties are compared to an 850 μm selected and a matched star-forming samples. We investigate stellar structures of 169 faint 450 μm sources (S 450 = 2.8–29.6 mJy; S/N > 4) at z 2 mJy) and more extended than the star-forming galaxies in the same redshift range. For the stellar mass and SFR-matched sample at z sime 1 and z sime 2, the size differences are marginal between faint SMGs and the matched galaxies. Moreover, faint SMGs have similar Sérsic indices and projected axis ratios as star-forming galaxies with the same stellar mass and SFR. Both SMGs and the matched galaxies show high fractions (~70%) of disturbed features at z sime 2, and the fractions depend on the SFRs. These suggest that their star formation activity is related to galaxy merging and the stellar structures of SMGs are similar to those of star-forming galaxies. We show that the depths of submillimeter surveys are approaching the lower luminosity end of star-forming galaxies, allowing us to detect galaxies on the main sequence
Atacama Cosmology Telescope: Weighing Distant Clusters with the Most Ancient Light
We use gravitational lensing of the cosmic microwave background (CMB) to measure the mass of the most distant blindly selected sample of galaxy clusters on which a lensing measurement has been performed to date. In CMB data from the the Atacama Cosmology Telescope and the Planck satellite, we detect the stacked lensing effect from 677 near-infrared-selected galaxy clusters from the Massive and Distant Clusters of WISE Survey (MaDCoWS), which have a mean redshift of ⟨z⟩ = 1.08. There are currently no representative optical weak lensing measurements of clusters that match the distance and average mass of this sample. We detect the lensing signal with a significance of 4.2σ. We model the signal with a halo model framework to find the mean mass of the population from which these clusters are drawn. Assuming that the clusters follow Navarro–Frenk–White (NFW) density profiles, we infer a mean mass of ⟨M_(500c)⟩ = (1.7±0.4)×10¹⁴M⊙. We consider systematic uncertainties from cluster redshift errors, centering errors, and the shape of the NFW profile. These are all smaller than 30% of our reported uncertainty. This work highlights the potential of CMB lensing to enable cosmological constraints from the abundance of distant clusters populating ever larger volumes of the observable universe, beyond the capabilities of optical weak lensing measurements
The Atacama Cosmology Telescope: Modeling the Gas Thermodynamics in BOSS CMASS galaxies from Kinematic and Thermal Sunyaev-Zel'dovich Measurements
The thermal and kinematic Sunyaev-Zel'dovich effects (tSZ, kSZ) probe the
thermodynamic properties of the circumgalactic and intracluster medium (CGM and
ICM) of galaxies, groups, and clusters, since they are proportional,
respectively, to the integrated electron pressure and momentum along the
line-of-sight. We present constraints on the gas thermodynamics of CMASS
galaxies in the Baryon Oscillation Spectroscopic Survey (BOSS) using new
measurements of the kSZ and tSZ signals obtained in a companion paper.
Combining kSZ and tSZ measurements, we measure within our model the amplitude
of energy injection , where is the stellar
mass, to be , and the amplitude of the
non-thermal pressure profile to be (2),
indicating that less than 20% of the total pressure within the virial radius is
due to a non-thermal component. We estimate the effects of including baryons in
the modeling of weak-lensing galaxy cross-correlation measurements using the
best fit density profile from the kSZ measurement. Our estimate reduces the
difference between the original theoretical model and the weak-lensing galaxy
cross-correlation measurements in arXiv:1611.08606 by half, but does not fully
reconcile it. Comparing the kSZ and tSZ measurements to cosmological
simulations, we find that they under predict the CGM pressure and to a lesser
extent the CGM density at larger radii. This suggests that the energy injected
via feedback models in the simulations that we compared against does not
sufficiently heat the gas at these radii. We do not find significant
disagreement at smaller radii. These measurements provide novel tests of
current and future simulations. This work demonstrates the power of joint, high
signal-to-noise kSZ and tSZ observations, upon which future cross-correlation
studies will improve.Comment: Accepted for publication in Physical Review D. Editors' Suggestion.
New Fig. 1-2, Tab.
Safety of intravenous ferric carboxymaltose versus oral iron in patients with nondialysis-dependent CKD: an analysis of the 1-year FIND-CKD trial.
Background: The evidence base regarding the safety of intravenous (IV) iron therapy in patients with chronic kidney disease (CKD) is incomplete and largely based on small studies of relatively short duration. Methods: FIND-CKD (ClinicalTrials.gov number NCT00994318) was a 1-year, open-label, multicenter, prospective study of patients with nondialysis-dependent CKD, anemia and iron deficiency randomized (1:1:2) to IV ferric carboxymaltose (FCM), targeting higher (400-600 µg/L) or lower (100-200 µg/L) ferritin, or oral iron. A post hoc analysis of adverse event rates per 100 patient-years was performed to assess the safety of FCM versus oral iron over an extended period. Results: The safety population included 616 patients. The incidence of one or more adverse events was 91.0, 100.0 and 105.0 per 100 patient-years in the high ferritin FCM, low ferritin FCM and oral iron groups, respectively. The incidence of adverse events with a suspected relation to study drug was 15.9, 17.8 and 36.7 per 100 patient-years in the three groups; for serious adverse events, the incidence was 28.2, 27.9 and 24.3 per 100 patient-years. The incidence of cardiac disorders and infections was similar between groups. At least one ferritin level ≥800 µg/L occurred in 26.6% of high ferritin FCM patients, with no associated increase in adverse events. No patient with ferritin ≥800 µg/L discontinued the study drug due to adverse events. Estimated glomerular filtration rate remained the stable in all groups. Conclusions: These results further support the conclusion that correction of iron deficiency anemia with IV FCM is safe in patients with nondialysis-dependent CKD
The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and its Implications for Structure Growth
We present new measurements of cosmic microwave background (CMB) lensing over
sq. deg. of the sky. These lensing measurements are derived from the
Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB dataset, which
consists of five seasons of ACT CMB temperature and polarization observations.
We determine the amplitude of the CMB lensing power spectrum at
precision ( significance) using a novel pipeline that minimizes
sensitivity to foregrounds and to noise properties. To ensure our results are
robust, we analyze an extensive set of null tests, consistency tests, and
systematic error estimates and employ a blinded analysis framework. The
baseline spectrum is well fit by a lensing amplitude of
relative to the Planck 2018 CMB power spectra
best-fit CDM model and relative to
the best-fit model. From our lensing power
spectrum measurement, we derive constraints on the parameter combination
of
from ACT DR6 CMB lensing alone and
when combining ACT DR6 and Planck NPIPE
CMB lensing power spectra. These results are in excellent agreement with
CDM model constraints from Planck or
CMB power spectrum measurements. Our lensing measurements from redshifts
-- are thus fully consistent with CDM structure growth
predictions based on CMB anisotropies probing primarily . We find no
evidence for a suppression of the amplitude of cosmic structure at low
redshiftsComment: 45+21 pages, 50 figures. Prepared for submission to ApJ. Also see
companion papers Madhavacheril et al and MacCrann et a
The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters
We present cosmological constraints from a gravitational lensing mass map
covering 9400 sq. deg. reconstructed from CMB measurements made by the Atacama
Cosmology Telescope (ACT) from 2017 to 2021. In combination with BAO
measurements (from SDSS and 6dF), we obtain the amplitude of matter
fluctuations at 1.8% precision,
and the Hubble
constant at
1.6% precision. A joint constraint with CMB lensing measured by the Planck
satellite yields even more precise values: ,
and . These measurements agree
well with CDM-model extrapolations from the CMB anisotropies measured
by Planck. To compare these constraints to those from the KiDS, DES, and HSC
galaxy surveys, we revisit those data sets with a uniform set of assumptions,
and find from all three surveys are lower than that from ACT+Planck
lensing by varying levels ranging from 1.7-2.1. These results motivate
further measurements and comparison, not just between the CMB anisotropies and
galaxy lensing, but also between CMB lensing probing on
mostly-linear scales and galaxy lensing at on smaller scales. We
combine our CMB lensing measurements with CMB anisotropies to constrain
extensions of CDM, limiting the sum of the neutrino masses to eV (95% c.l.), for example. Our results provide independent
confirmation that the universe is spatially flat, conforms with general
relativity, and is described remarkably well by the CDM model, while
paving a promising path for neutrino physics with gravitational lensing from
upcoming ground-based CMB surveys.Comment: 30 pages, 16 figures, prepared for submission to ApJ. Cosmological
likelihood data is here:
https://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html ; likelihood
software is here: https://github.com/ACTCollaboration/act_dr6_lenslike . Also
see companion papers Qu et al and MacCrann et al. Mass maps will be released
when papers are publishe
The Atacama Cosmology Telescope: High-resolution component-separated maps across one-third of the sky
Observations of the millimeter sky contain valuable information on a number
of signals, including the blackbody cosmic microwave background (CMB), Galactic
emissions, and the Compton- distortion due to the thermal Sunyaev-Zel'dovich
(tSZ) effect. Extracting new insight into cosmological and astrophysical
questions often requires combining multi-wavelength observations to spectrally
isolate one component. In this work, we present a new arcminute-resolution
Compton- map, which traces out the line-of-sight-integrated electron
pressure, as well as maps of the CMB in intensity and E-mode polarization,
across a third of the sky (around 13,000 sq.~deg.). We produce these through a
joint analysis of data from the Atacama Cosmology Telescope (ACT) Data Release
4 and 6 at frequencies of roughly 93, 148, and 225 GHz, together with data from
the \textit{Planck} satellite at frequencies between 30 GHz and 545 GHz. We
present detailed verification of an internal linear combination pipeline
implemented in a needlet frame that allows us to efficiently suppress Galactic
contamination and account for spatial variations in the ACT instrument noise.
These maps provide a significant advance, in noise levels and resolution, over
the existing \textit{Planck} component-separated maps and will enable a host of
science goals including studies of cluster and galaxy astrophysics, inferences
of the cosmic velocity field, primordial non-Gaussianity searches, and
gravitational lensing reconstruction of the CMB.Comment: The Compton-y map and associated products will be made publicly
available upon publication of the paper. The CMB T and E mode maps will be
made available when the DR6 maps are made publi
- …