3,233 research outputs found
Universality of Einstein Equations for the Ricci Squared Lagrangians
It has been recently shown that, in the first order (Palatini) formalism,
there is universality of Einstein equations and Komar energy-momentum complex,
in the sense that for a generic nonlinear Lagrangian depending only on the
scalar curvature of a metric and a torsionless connection one always gets
Einstein equations and Komar's expression for the energy-momentum complex. In
this paper a similar analysis (also in the framework of the first order
formalism) is performed for all nonlinear Lagrangians depending on the
(symmetrized) Ricci square invariant. The main result is that the universality
of Einstein equations and Komar energy-momentum complex also extends to this
case (modulo a conformal transformation of the metric).Comment: 21 pages, Late
The Universality of Einstein Equations
It is shown that for a wide class of analytic Lagrangians which depend only
on the scalar curvature of a metric and a connection, the application of the
so--called ``Palatini formalism'', i.e., treating the metric and the connection
as independent variables, leads to ``universal'' equations. If the dimension
of space--time is greater than two these universal equations are Einstein
equations for a generic Lagrangian and are suitably replaced by other universal
equations at bifurcation points. We show that bifurcations take place in
particular for conformally invariant Lagrangians and prove
that their solutions are conformally equivalent to solutions of Einstein
equations. For 2--dimensional space--time we find instead that the universal
equation is always the equation of constant scalar curvature; the connection in
this case is a Weyl connection, containing the Levi--Civita connection of the
metric and an additional vectorfield ensuing from conformal invariance. As an
example, we investigate in detail some polynomial Lagrangians and discuss their
bifurcations.Comment: 15 pages, LaTeX, (Extended Version), TO-JLL-P1/9
Constraining the Physical State by Symmetries
After reviewing the hole argument and its relations with initial value
problem and general covariance, we shall discuss how much freedom one has to
define the physical state of a system in a generally covariant (or gauge
covariant) field theory. We shall show that in gauge covariant theories (and
generally covariant theories with a a compact space) one has no freedom and one
is forced to declare as physically equivalent two configurations which differ
by a gauge transformation (or by a global spacetime diffeomorphism), as it is
usually prescribed. On the contrary, when space is not compact, the result
proven for the compact case does not hold true and one may have different
options to define physically equivalent configurations, still preserving
determinism.Comment: 12 page
Entropy of Self-Gravitating Systems from Holst's Lagrangian
We shall prove here that conservation laws from Holst's Lagrangian, often
used in LQG, do not agree with the corresponding conservation laws in standard
GR. Nevertheless, these differences vanish on-shell, i.e. along solutions, so
that they eventually define the same classical conserved quantities.
Accordingly, they define in particular the same entropy of solutions, and the
standard law S=A/4 is reproduced for systems described by Holst's Lagragian.
This provides the classical support to the computation usually done in LQG for
the entropy of black holes which is in turn used to fix the Barbero-Immirzi
parameter.Comment: 4 pages, no figures; just acknowledgments change
Hamiltonian, Energy and Entropy in General Relativity with Non-Orthogonal Boundaries
A general recipe to define, via Noether theorem, the Hamiltonian in any
natural field theory is suggested. It is based on a Regge-Teitelboim-like
approach applied to the variation of Noether conserved quantities. The
Hamiltonian for General Relativity in presence of non-orthogonal boundaries is
analysed and the energy is defined as the on-shell value of the Hamiltonian.
The role played by boundary conditions in the formalism is outlined and the
quasilocal internal energy is defined by imposing metric Dirichlet boundary
conditions. A (conditioned) agreement with previous definitions is proved. A
correspondence with Brown-York original formulation of the first principle of
black hole thermodynamics is finally established.Comment: 29 pages with 1 figur
A covariant formalism for Chern-Simons gravity
Chern--Simons type Lagrangians in dimensions are analyzed from the
point of view of their covariance and globality. We use the transgression
formula to find out a new fully covariant and global Lagrangian for
Chern--Simons gravity: the price for establishing globality is hidden in a
bimetric (or biconnection) structure. Such a formulation allows to calculate
from a global and simpler viewpoint the energy-momentum complex and the
superpotential both for Yang--Mills and gravitational examples.Comment: 12 pages,LaTeX, to appear in Journal of Physics
Remarks on Conserved Quantities and Entropy of BTZ Black Hole Solutions. Part II: BCEA Theory
The BTZ black hole solution for (2+1)-spacetime is considered as a solution
of a triad-affine theory (BCEA) in which topological matter is introduced to
replace the cosmological constant in the model. Conserved quantities and
entropy are calculated via Noether theorem, reproducing in a geometrical and
global framework earlier results found in the literature using local
formalisms. Ambiguities in global definitions of conserved quantities are
considered in detail. A dual and covariant Legendre transformation is performed
to re-formulate BCEA theory as a purely metric (natural) theory (BCG) coupled
to topological matter. No ambiguities in the definition of mass and angular
momentum arise in BCG theory. Moreover, gravitational and matter contributions
to conserved quantities and entropy are isolated. Finally, a comparison of BCEA
and BCG theories is carried out by relying on the results obtained in both
theories.Comment: PlainTEX, 20 page
Universal field equations for metric-affine theories of gravity
We show that almost all metric--affine theories of gravity yield Einstein
equations with a non--null cosmological constant . Under certain
circumstances and for any dimension, it is also possible to incorporate a Weyl
vector field and therefore the presence of an anisotropy. The viability
of these field equations is discussed in view of recent astrophysical
observations.Comment: 13 pages. This is a copy of the published paper. We are posting it
here because of the increasing interest in f(R) theories of gravit
The dynamical equivalence of modified gravity revisited
We revisit the dynamical equivalence between different representations of
vacuum modified gravity models in view of Legendre transformations. The
equivalence is discussed for both bulk and boundary space, by including in our
analysis the relevant Gibbons-Hawking terms. In the f(R) case, the Legendre
transformed action coincides with the usual Einstein frame one. We then
re-express the R+f(G) action, where G is the Gauss-Bonnet term, as a second
order theory with a new set of field variables, four tensor fields and one
scalar and study its dynamics. For completeness, we also calculate the
conformal transformation of the full Jordan frame R+f(G) action. All the
appropriate Gibbons-Hawking terms are calculated explicitly.Comment: 17 pages; v3: Revised version. New comments added in Sections 3 & 5.
New results added in Section 6. Version to appear in Class. Quantum Gravit
Conserved Quantities from the Equations of Motion (with applications to natural and gauge natural theories of gravitation)
We present an alternative field theoretical approach to the definition of
conserved quantities, based directly on the field equations content of a
Lagrangian theory (in the standard framework of the Calculus of Variations in
jet bundles). The contraction of the Euler-Lagrange equations with Lie
derivatives of the dynamical fields allows one to derive a variational
Lagrangian for any given set of Lagrangian equations. A two steps algorithmical
procedure can be thence applied to the variational Lagrangian in order to
produce a general expression for the variation of all quantities which are
(covariantly) conserved along the given dynamics. As a concrete example we test
this new formalism on Einstein's equations: well known and widely accepted
formulae for the variation of the Hamiltonian and the variation of Energy for
General Relativity are recovered. We also consider the Einstein-Cartan
(Sciama-Kibble) theory in tetrad formalism and as a by-product we gain some new
insight on the Kosmann lift in gauge natural theories, which arises when trying
to restore naturality in a gauge natural variational Lagrangian.Comment: Latex file, 31 page
- …
