680 research outputs found
The Algebra of Physical Observables in Nonlinearly Realized Gauge Theories
We classify the physical observables in spontaneously broken nonlinearly
realized gauge theories in the recently proposed loopwise expansion governed by
the Weak Power-Counting (WPC) and the Local Functional Equation. The latter
controls the non-trivial quantum deformation of the classical nonlinearly
realized gauge symmetry, to all orders in the loop expansion. The
Batalin-Vilkovisky (BV) formalism is used. We show that the dependence of the
vertex functional on the Goldstone fields is obtained via a canonical
transformation w.r.t. the BV bracket associated with the BRST symmetry of the
model. We also compare the WPC with strict power-counting renormalizability in
linearly realized gauge theories. In the case of the electroweak group we find
that the tree-level Weinberg relation still holds if power-counting
renormalizability is weakened to the WPC condition.Comment: 20 pages, 1 figur
GIADA performance during Rosetta mission scientific operations at comet 67P
The Grain Impact Analyser and Dust Accumulator (GIADA) instrument onboard Rosetta studied the dust environment of comet 67P/Churyumov–Gerasimenko from 3.7 au inbound, through perihelion, to 3.8 au outbound, measuring the dust flow and the dynamic properties of individual particles. GIADA is composed of three subsystems: 1) Grain Detection System (GDS); 2) Impact Sensor (IS); and 3) Micro-Balances System (MBS). Monitoring the subsystems’ performance during operations is an important element for the correct calibration of scientific measurements. In this paper, we analyse the GIADA inflight calibration data obtained by internal calibration devices for the three subsystems during the period from 1 August 2014 to 31 October 2015. The calibration data testify a nominal behaviour of the instrument during these fifteen months of mission; the only exception is a minor loss of sensitivity for one of the two GDS receivers, attributed to dust contamination
An elliptical tiling method to generate a 2-dimensional set of templates for gravitational wave search
Searching for a signal depending on unknown parameters in a noisy background
with matched filtering techniques always requires an analysis of the data with
several templates in parallel in order to ensure a proper match between the
filter and the real waveform. The key feature of such an implementation is the
design of the filter bank which must be small to limit the computational cost
while keeping the detection efficiency as high as possible. This paper presents
a geometrical method which allows one to cover the corresponding physical
parameter space by a set of ellipses, each of them being associated to a given
template. After the description of the main characteristics of the algorithm,
the method is applied in the field of gravitational wave (GW) data analysis,
for the search of damped sine signals. Such waveforms are expected to be
produced during the de-excitation phase of black holes -- the so-called
'ringdown' signals -- and are also encountered in some numerically computed
supernova signals.Comment: Accepted in PR
Excitation of the odd-parity quasi-normal modes of compact objects
The gravitational radiation generated by a particle in a close unbounded
orbit around a neutron star is computed as a means to study the importance of
the modes of the neutron star. For simplicity, attention is restricted to
odd parity (``axial'') modes which do not couple to the neutron star's fluid
modes. We find that for realistic neutron star models, particles in unbounded
orbits only weakly excite the modes; we conjecture that this is also the
case for astrophysically interesting sources of neutron star perturbations. We
also find that for cases in which there is significant excitation of quadrupole
modes, there is comparable excitation of higher multipole modes.Comment: 18 pages, 21 figures, submitted to Phys. Rev.
Calculation of the interspecies s-wave scattering length in an ultracold Na-Rb vapor
We report the calculation of the interspecies scattering length for the
sodium-rubidium (Na-Rb) system. We present improved hybrid potentials for the
singlet and triplet ground states of the NaRb
molecule, and calculate the singlet and triplet scattering lengths and
for the isotopomers NaRb and NaRb. Using
these values, we assess the prospects for producing a stable two-species
Bose-Einstein condensate in the Na-Rb system.Comment: v2: report correct units in Table captions, fix error in conclusions
for NaRb TBEC. Otherwise, more concise presentation, typos
fixed. 6 pages, 1 figur
BESII Detector Simulation
A Monte Carlo program based on Geant3 has been developed for BESII detector
simulation. The organization of the program is outlined, and the digitization
procedure for simulating the response of various sub-detectors is described.
Comparisons with data show that the performance of the program is generally
satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM
Measurement of the partial widths of the Z into up- and down-type quarks
Using the entire OPAL LEP1 on-peak Z hadronic decay sample, Z -> qbarq gamma
decays were selected by tagging hadronic final states with isolated photon
candidates in the electromagnetic calorimeter. Combining the measured rates of
Z -> qbarq gamma decays with the total rate of hadronic Z decays permits the
simultaneous determination of the widths of the Z into up- and down-type
quarks. The values obtained, with total errors, were Gamma u = 300 ^{+19}_{-18}
MeV and Gamma d = 381 ^{+12}_{-12} MeV. The results are in good agreement with
the Standard Model expectation.Comment: 22 pages, 5 figures, Submitted to Phys. Letts.
Search for R-Parity Violating Decays of Scalar Fermions at LEP
A search for pair-produced scalar fermions under the assumption that R-parity
is not conserved has been performed using data collected with the OPAL detector
at LEP. The data samples analysed correspond to an integrated luminosity of
about 610 pb-1 collected at centre-of-mass energies of sqrt(s) 189-209 GeV. An
important consequence of R-parity violation is that the lightest supersymmetric
particle is expected to be unstable. Searches of R-parity violating decays of
charged sleptons, sneutrinos and squarks have been performed under the
assumptions that the lightest supersymmetric particle decays promptly and that
only one of the R-parity violating couplings is dominant for each of the decay
modes considered. Such processes would yield final states consisting of
leptons, jets, or both with or without missing energy. No significant
single-like excess of events has been observed with respect to the Standard
Model expectations. Limits on the production cross- section of scalar fermions
in R-parity violating scenarios are obtained. Constraints on the supersymmetric
particle masses are also presented in an R-parity violating framework analogous
to the Constrained Minimal Supersymmetric Standard Model.Comment: 51 pages, 24 figures, Submitted to Eur. Phys. J.
Measurement of the Strong Coupling alpha s from Four-Jet Observables in e+e- Annihilation
Data from e+e- annihilation into hadrons at centre-of-mass energies between
91 GeV and 209 GeV collected with the OPAL detector at LEP, are used to study
the four-jet rate as a function of the Durham algorithm resolution parameter
ycut. The four-jet rate is compared to next-to-leading order calculations that
include the resummation of large logarithms. The strong coupling measured from
the four-jet rate is alphas(Mz0)=
0.1182+-0.0003(stat.)+-0.0015(exp.)+-0.0011(had.)+-0.0012(scale)+-0.0013(mass)
in agreement with the world average. Next-to-leading order fits to the
D-parameter and thrust minor event-shape observables are also performed for the
first time. We find consistent results, but with significantly larger
theoretical uncertainties.Comment: 25 pages, 15 figures, Submitted to Euro. Phys. J.
Measurement of the Hadronic Photon Structure Function F_2^gamma at LEP2
The hadronic structure function of the photon F_2^gamma is measured as a
function of Bjorken x and of the factorisation scale Q^2 using data taken by
the OPAL detector at LEP. Previous OPAL measurements of the x dependence of
F_2^gamma are extended to an average Q^2 of 767 GeV^2. The Q^2 evolution of
F_2^gamma is studied for average Q^2 between 11.9 and 1051 GeV^2. As predicted
by QCD, the data show positive scaling violations in F_2^gamma. Several
parameterisations of F_2^gamma are in agreement with the measurements whereas
the quark-parton model prediction fails to describe the data.Comment: 4 pages, 2 figures, to appear in the proceedings of Photon 2001,
Ascona, Switzerlan
- …