22 research outputs found

    Variable Food Begging Calls Are Harbingers of Vocal Learning

    Get PDF
    Vocal learning has evolved in only a few groups of mammals and birds. The developmental and evolutionary origins of vocal learning remain unclear. The imitation of a memorized sound is a clear example of vocal learning, but is that when vocal learning starts? Here we use an ontogenetic approach to examine how vocal learning emerges in a songbird, the chipping sparrow. The first vocalizations of songbirds, food begging calls, were thought to be innate, and vocal learning emerges later during subsong, a behavior reminiscent of infant babbling. Here we report that the food begging calls of male sparrows show several characteristics associated with learned song: male begging calls are highly variable between individuals and are altered by deafening; the production of food begging calls induces c-fos expression in a forebrain motor nucleus, RA, that is involved with the production of learned song. Electrolytic lesions of RA significantly reduce the variability of male calls. The male begging calls are subsequently incorporated into subsong, which in turn transitions into recognizable attempts at vocal imitation. Females do not sing and their begging calls are not affected by deafening or RA lesion. Our results suggest that, in chipping sparrows, intact hearing can influence the quality of male begging calls, auditory-sensitive vocal variability during food begging calls is the first step in a modification of vocal output that eventually culminates with vocal imitation

    Targeted Neuronal Death Affects Neuronal Replacement and Vocal Behavior in Adult Songbirds

    Get PDF
    AbstractIn the high vocal center (HVC) of adult songbirds, increases in spontaneous neuronal replacement correlate with song changes and with cell death. We experimentally induced death of specific HVC neuron types in adult male zebra finches using targeted photolysis. Induced death of a projection neuron type that normally turns over resulted in compensatory replacement of the same type. Induced death of the normally nonreplaced type did not stimulate their replacement. In juveniles, death of the latter type increased recruitment of the replaceable kind. We infer that neuronal death regulates the recruitment of replaceable neurons. Song deteriorated in some birds only after elimination of replaceable neurons. Behavioral deficits were transient and followed by variable degrees of recovery. This raises the possibility that induced neuronal replacement can restore a learned behavior

    Peter Marler (1928–2014)

    No full text

    The Song System of Songbirds

    No full text
    <p>Nucleus HVC feeds information into two pathways that ultimately lead to the neurons in the tracheosyringeal half of the hypoglossal nucleus (nXIIts) that project to vocal muscles. HVC projects to nucleus RA directly (PDP), and indirectly via Area X, the dorsolateral anterior thalamic nucleus (DLM), and LMAN (AFP) in a manner that shares similarities with the mammalian pathway cortex→basal ganglia→thalamus→cortex.</p

    Variable rate of singing and variable song duration are associated with high immediate early gene expression in two anterior forebrain song nuclei

    No full text
    The duration of songs and the intervals between these songs are more variable when wild, adult, free-ranging chipping sparrows sing at dawn than when they sing during the day. The more variable delivery is used to interact with males, and the stereotyped delivery is used to attract females. In captive birds, however, the variability observed at dawn persists during the day. We quantified the expression of an immediate early gene, ZENK, in wild and captive birds and found that the level of song-associated ZENK expression in two song nuclei, Area X and lMAN, was positively related to variability in song duration and intersong interval and could be dissociated from the social context in which the song occurred. Thus, a combination of field and laboratory approaches helped us identify nuclei, context, and behavioral features associated with a change in gene expression thought to be a marker of behavioral variability
    corecore