11 research outputs found
Deep Neural Network for damage detection in Infante Dom Henrique bridge using multi-sensor data
This paper proposes a data-driven approach to detect damage using monitoring data from the Infante Dom Henrique bridge in Porto.
The main contribution of this work lies in exploiting the combination of raw measurements from local (inclinations and stresses) and global (eigenfrequencies) variables in a full-scale SHM application.
We exhaustively analyze and compare the advantages and drawbacks of employing each variable type and explore the potential of combining them.
An autoencoder-based Deep Neural Network is employed to properly reconstruct measurements under healthy conditions of the structure, which are influenced by environmental and operational variability.
The damage-sensitive feature for outlier detection is the reconstruction error that measures the discrepancy between current and estimated measurements.
Three autoencoder architectures are designed according to the input: local variables, global variables, and their combination.
To test the performance of the methodology in detecting the presence of damage, we employ a Finite Element model to calculate the relative change in the structural response induced by damage at four locations.
These relative variations between the healthy and damaged responses are employed to affect the experimental testing data, thus producing realistic time-domain damaged measurements.
We analyze the Receiver Operating Curves and investigate the latent feature representation of the data provided by the autoencoder in the presence of damage.
Results reveal the existence of synergies between the different variable types, producing almost perfect classifiers throughout the performed tests when combining the two available data sources.
When damage occurs far from the instrumented sections, the area under the curve in the combined approach increases compared to using local variables only.
The classificatoin metrics also demonstrate the enhancement of combining both sources of data in the damage detection task, reaching close to precission values for the four considered test damage scenarios.
Finally, we also investigate the capability of local variables to localize the damage, demonstrating the potential of including these variables in the damage detection task.HAZITEK programme (ERROTAID project) and TCRINI project (KK-2023-0029)
European Horizon (HE) with LIASON project (GA 101103698), and FUTURAL project (101083958
Deep learning enhanced principal component analysis for structural health monitoring
This paper proposes a Deep Learning enhanced Principal Component Analysis (PCA) approach for outlier detection to assess the structural condition of bridges. We employ a partially explainable autoencoder architecture to replicate and enhance the data compression and reconstruction ability of PCA. The particularity of the method lies in the addition of residual connections to account for nonlinearities. We apply the proposed method to monitoring data obtained from two bridges under real operation conditions and compare the results before and after adding the residual connections. Results show that the addition of residual connections enhances the outlier detection ability of the network, allowing to detect lighter damages.This work has received funding from: the European Union's Horizon 2020 research and innovation program under the grant agreement No 769373 (FORESEE project) and the Marie Sklodowska-Curie grant agreement No 777778 (MATHROCKS); the Base Funding - UIDB/04708/2020 of the CONSTRUCT - Instituto de I\&D em Estruturas e Construções - funded by national funds through the FCT/MCTES (PIDDAC); the European Regional Development Fund (ERDF) through the Interreg V-A Spain-France-Andorra program POCTEFA 2014-2020 Project PIXIL (EFA362/19); the Spanish Ministry of Science and Innovation with references PID2019-108111RB-I00 MCIN/AEI/10.13039/501100011033 (FEDER/AEI) and the “BCAM Severo Ochoa” accreditation of excellence (SEV-2017-0718); and the Basque Government through the BERC 2018-2021 program, the two Elkartek projects 3KIA (KK-2020/00049) and MATHEO (KK-2019-00085), the grant "Artificial Intelligence in BCAM number EXP. 2019/00432", and the Consolidated Research Group MATHMODE (IT1294-19) given by the Department of Education
Bridge damage identification under varying environmental and operational conditions combining Deep Learning and numerical simulations
This work proposes a novel supervised learning approach to identify damage in operating bridge structures. We propose a method to introduce the effect of environmental and operational conditions into the synthetic damage scenarios employed for training a Deep Neural Network, which is applicable to large-scale complex structures. We apply a clustering technique based on Gaussian Mixtures to effectively select Q representative measurements from a long-term monitoring dataset. We employ these measurements as the target response to solve various Finite Element Model Updating problems before generating different damage scenarios. The synthetic and experimental measurements feed two Deep Neural Networks that assess the structural health condition in terms of damage severity and location. We demonstrate the applicability of the proposed method with a real full-scale case study: the Infante Dom Henrique bridge in Porto. A comparative study reveals that neglecting different environmental and operational conditions during training detracts the damage identification task. By contrast, our method provides successful results during a synthetic validation
Deep learning enhanced principal component analysis for structural health monitoring
This paper proposes a Deep Learning Enhanced Principal Component Analysis (PCA) approach for outlier detection to assess the structural condition of bridges. We employ partially explainable autoencoder architecture to replicate and enhance the data compression and reconstruction ability of PCA. The particularity of the method lies in the addition of residual connections to account for nonlinearities. We apply the proposed method to monitoring data obtained from two bridges under real operation conditions and compare the results before and after adding the residual connections. Results show that the addition of residual connections enhances the outlier detection ability of the network, allowing to detect lighter damages
Can urban coffee consumption help predict US inflation?
Motivated by the importance of coffee to Americans and the significance of the coffee subsector to the US economy, we pursue three notable innovations. First, we augment the traditional Phillips curve model with the coffee price as a predictor, and show that the resulting model outperforms the traditional variant in both in-sample and out-of-sample predictability of US inflation. Second, we demonstrate the need to account for the inherent statistical features of predictors such as persistence, endogeneity, and conditional heteroskedasticity effects when dealing with US inflation. Consequently, we offer robust illustrations to show that the choice of estimator matters for improved US inflation forecasts. Third, the proposed augmented Phillips curve also outperforms time series models such as autoregressive integrated moving average and the fractionally integrated version for both in-sample and out-of-sample forecasts. Our results show that augmenting the traditional Phillips curve with the urban coffee price will produce better forecast results for US inflation only when the statistical effects are captured in the estimation process. Our results are robust to alternative measures of inflation, different data frequencies, higher order moments, multiple data samples and multiple forecast horizons
Damage identification in bridges combining deep learning and computational mechanic
Civil infrastructures, such as bridges, are critical assets for society and the economy. Many of them have already reached their expected life and withstand loadings that exceed the design specifications. Besides, bridges suffer from various degradation mechanisms, including aging, corrosion, earthquakes, and, nowadays, the undeniable effect of climate change. This context has motivated an increasing interest in early detecting damage to prevent costly actions and dangerous failures. Structural Health Monitoring (SHM) consists of implementing effective strategies to continuously assess the health condition of structures using monitoring data collected by sensors. This dissertation focuses on the SHM problem of damage detection and identification. It is an ill-posed inverse problem that aims at inferring the health state of a structure from measurements of its response. The measurements include large amounts of noisy data affected by environmental and operational conditions, acquired with sensors of different nature. Solving such a multidisciplinary problem encompasses the use of applied mathematics, computational mechanics, and data science. In this dissertation, we exploit the potential of Deep Neural Networks in approximating complex inverse problems and employ computational parametrizations and the Finite Element Method to enrich the training phase by including damage scenarios. We explore two different approaches to the problem. In the first approach, we develop an outlier detection strategy to detect departures from the baseline condition. We only employ long-term monitoring data measured at the bridge during normal (healthy) operation. Starting from Principal Component Analysis (PCA) as a statistical data reconstruction technique, we design a specific Deep Autoencoder network that enhances PCA by adding residual connections to include nonlinear transformations. This architecture gains partial explainability by evaluating the contribution of nonlinearties over affine transformations in the reconstruction process. We also investigate the method performance when using local or global variables and evaluate the potential of combining both data sources in the damage detection task. In the second approach, we reach a higher level of damage identification by estimating its severity and location. The goal is to provide a suitable methodology for real full-scale applications that requires reasonable computational resources. We employ a calibrated computational parametrization to solve multiple Finite Element simulations under different damage scenarios. These synthetic scenarios enrich the training dataset of a Deep Neural Network that maps the response of the bridge with its health condition in terms of damage location and severity. Finally, we incorporate the effect of environmental and operational variability in the parametrization by applying a clustering algorithm to find representative samples among the entire dataset. We assume these samples cover most of the variability present in the data and consider them as starting points to generate synthetic training data. We apply the proposed methods to three main case study bridges with available monitoring data: the Beltran bridge in Mexico, and the Infante Dom Henrique bridge in Porto, and the Z24 bridge in Switzerland. Both structures resulted critical to validate and test the ability of the proposed methods and to demonstrate their applicability in the full-scale.This disseration has been possible thanks to the support received from: the European Union’s Horizon 2020 research and innovation program under the grant agreement No 769373 (FORESEE project) and the Marie Sklodowska-Curie grant agreement No 777778 (MATHROCKS); the Base Funding - UIDB/04708/2020 of the CONSTRUCT - Instituto de I&D em Estruturas e Constru¸c˜oes - funded by national funds through the FCT/MCTES (PIDDAC); the European Regional Development Fund (ERDF) through the Interreg V-A Spain-France-Andorra program POCTEFA 2014-2020 Project PIXIL (EFA362/19); the Spanish Ministry of Science and Innovation with references PID2019-108111RB-I00 (FEDER/AEI) and the “BCAM Severo Ochoa” accreditation of excellence (SEV-2017-0718); and the Basque Government through the BERC 2018-2021 program, the four Elkartek projects 3KIA (KK-2020/00049), EXPERTIA (KK-2021/00048), MATHEO (KK-2019-00085), and SIGZE (KK-2021/00095); the grant “Artificial Intelligence in BCAM number EXP. 2019/00432”, and the Consolidated Research Group MATHMODE (IT1294-19) given by the Department of Education
Combined model-based and machine learning approach for damage identification in bridge type structures
In this work, we propose a combined approach of model-based and machine learning techniques for damage identification in bridge structures. First, a finite element model is calibrated with real data from experimental vibration modes for the undamaged or baseline state. Second, generic synthetic damage scenarios based on modal parameters are automatically generated with the model to train machine learning algorithms for damage classification (Support Vector Machine, SVM) and damage location and quantification (Neural Network, NN). For an initial validation of the method we use a lab scale truss bridge model, proving that specific damage scenarios can be assessed by the Supervised Machine Learning algorithms trained with generic damage scenarios including a certain variability. The NN provides an assessment in terms of damage location and quantification, whereas the SVM provides a damage severity classification with graphical indication of the damage location and quantification through a reduced dimension plot
Supervised Deep Learning with Finite Element simulations for damage identification in bridges
This work proposes a supervised Deep Learning approach for damage identification in bridge structures. We employ a hybrid methodology that incorporates Finite Element simulations to enrich the training phase of a Deep Neural Network with synthetic damage scenarios. The neural network is based on autoencoders and its particular architecture allows to activate or deactivate nonlinear connections under need. The methodology intends to contribute to the progress towards the applicability of Structural Health Monitoring practices in full-scale bridge structures. The ultimate goal is to estimate the location and severity of damage from measurements of the dynamic response of the structure. The damages we seek to detect correspond to material degradations that affect wide areas of the structure by reducing its stiffness properties. Our method allows a feasible adaptation to large systems with complex parametrizations and structural particularities. We investigate the performance of the proposed method on two full-scale instrumented bridges, obtaining adequate results for the testing datasets even in presence of measurement uncertainty. Besides, the method successfully predicts the damage condition for two real damage scenarios of increasing severity available in one of the bridges