70 research outputs found

    Streptococcus caprae sp. nov., isolated from Iberian ibex (Capra pyrenaica hispanica)

    Get PDF
    Biochemical and molecular genetic studies were performed on a novel Gram-stain-positive, catalase-negative, coccus-shaped organism isolated from tonsil samples of two Iberian ibexes. The micro-organism was identified as a streptococcal species based on its cellular, morphological and biochemical characteristics. 16S rRNA gene sequence comparison studies confirmed its identification as a member of the genus Streptococcus, but the organism did not correspond to any species of this genus. The nearest phylogenetic relative of the unknown coccus from ibex was Streptococcus porci 2923-03T (96.6 % 16S rRNA gene sequence similarity). Analysis based on rpoB and sodA gene sequences revealed sequence similarity values lower than 86.0 and 83.8 %, respectively, from the type strains of recognized Streptococcus species. The novel bacterial isolate was distinguished from Streptococcus porci and other Streptococcus species using biochemical tests. Based on both phenotypic and phylogenetic findings, it is proposed that the unknown bacterium be classified as representing a novel species of the genus Streptococcus, for which the name Streptococcus caprae sp. nov. is proposed. The type strain is DICM07-02790-1CT (= CECT 8872T = CCUG 67170T)

    Streptococcus porcorum sp. nov., isolated from domestic and wild pigs

    Get PDF
    Seven isolates of an unidentified Gram-stain-positive, catalase-negative, coccus-shaped organism isolated from domestic and wild pigs were characterized by phenotypic and molecular-genetic methods. Based on cellular morphology and biochemical criteria, the isolates were tentatively assigned to the genus Streptococcus, although the organisms did not appear to correspond to any recognized species. Comparative 16S rRNA gene sequencing showed that the unknown bacterium was phylogenetically closely related to, but distinct from, Streptococcus suis (97.5 % 16S rRNA gene sequence similarity to the type strain). rpoB and sodA sequence analysis showed minimum interspecies divergence from phylogenetically close 16S rRNA gene sequence-based relatives of 13.8 and 18.6 %, respectively. DNA-DNA hybridization of a strain of the unidentified organism demonstrated 8-18 % reassociation with S. suis NCTC 10234(T). The novel bacterium could be distinguished from S. suis and other Streptococcus species using biochemical tests. On the basis of phenotypic and phylogenetic evidence, it is proposed that the unknown isolates from domestic and wild animals be assigned to a novel species of the genus Streptococcus, Streptococcus porcorum sp. nov. The type strain is 682-03(T) (= CCUG 58479(T) = CECT 7593(T))

    Detection of mecC-Methicillin-resistant Staphylococcus aureus isolates in river water : a potential role for water in the environmental dissemination

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) is a public health concern due to limited treatment options. The recent description of a mecA homologue, mecC in human and cattle, led to studies to detect this new variant in human and other animal species. Detection of mecC in wild boar and fallow deer in a Spanish game estate led us to further investigate the presence of mecC-MRSA at this location. Samples from cattle, wild animals, workers and river water were tested. A further three mecC-MRSA isolates were obtained from river water. Molecular characterization (multilocus sequence typing and spa typing) and antimicrobial susceptibility testing (broth microdilution) showed that isolates were similar to those detected in wild animals. Whole genome sequencing confirmed that the isolates from the river water and wild animals in the same geographic area were all closely related isolates of ST425 mecC-MRSA. The presence of mecC-MRSA in the river water highlights the potential role of water in the dissemination of mecC-MRSA

    Streptococcus rupicaprae sp. nov., isolated from a Pyrenean chamois (Rupicapra pyrenaica)

    Get PDF
    Biochemical and molecular genetic studies were performed on an unknown Gram-stain-positive, catalase-negative, coccus-shaped organism isolated from clinical samples of a Pyrenean chamois. The micro-organism was identified as a streptococcal species based on its cellular morphological and biochemical tests. 16S rRNA gene sequence comparison studies confirmed its identification as a member of the genus Streptococcus, but the organism did not correspond to any species of this genus. The nearest phylogenetic relative of the unknown coccus from chamois was Streptococcus ovis (95.9 % 16S rRNA gene sequence similarity). The rpoB and sodA sequence analysis showed sequence similarity values of less than 85.7 % and 83.0 %, respectively, with the currently recognized species of the genus Streptococcus. The novel bacterial isolate was distinguished from S. ovis and other species of the genus Streptococcus using biochemical tests. Based on both phenotypic and phylogenetic findings, it is proposed that the unknown bacterium be classified as a novel species of the genus Streptococcus, Streptococcus rupicaprae sp. nov., with the type strain 2777-2-07(T) (= CECT 7718(T) = CCUG 59652(T))

    Microplate technique to determine hemolytic activity for routine typing of Listeria strains

    Get PDF
    Because the hemolysis produced by Listeria monocytogenes and Listeria seeligeri on blood agar is frequently difficult to interpret, we developed a microplate technique for the routine determination of hemolytic activity with erythrocyte suspensions. This microtechnique is a simple and reliable test for distinguishing clearly between hemolytic and nonhemolytic strains and could be used instead of the CAMP (Christie-Atkins-Munch-Petersen) test with Staphylococcus aureus in the routine typing of Listeria strains. Furthermore, our results suggest that the quantitation of the hemolytic activity of the Listeria strains, along with the D-xylose, L-rhamnose, and alpha-methyl-D-mannoside acidification tests, allows the differentiation of L. monocytogenes, L. seeligeri, and Listeria ivanovii. We also observed that the treatment of erythrocytes with crude exosubstances of rhodococcus equi, Pseudomonas fluorescens, Acinetobacter calcoaceticus, and S. aureus enhanced the hemolytic activity of all Listeria strains with this characteristic

    The association of Lactococcus petauri with lactococcosis is older than expected

    Get PDF
    Lactococcosis is a globally prevalent infectious disease that has a significant economic and sanitary impact on the rainbow trout industry. Lactococcus garvieae has traditionally been considered the only species implicated in the etiology of this disease, but Lactococcus petauri, a new species, has recently been implicated as another etiological agent. Both species cannot be distinguished by routine methods commonly used in diagnostic laboratories, resulting in their misidentification. In the present study, the identification of 48 isolates initially identified as L. garvieae was studied by determining their in-silico DNA–DNA hybridization (dDDH) and average nucleotide identity (ANI) values using pairwise comparisons of their whole genome sequences and the genomes of the type strains of L. garvieae and L. petauri. The genome sequences of 37 isolates from countries in which lactococcosis can be considered endemic (Spain, Italy, Türkiye, and Greece) were obtained in this study, and the genomes of 11 isolates were retrieved from the GenBank database. Isolates from Italy, Singapore, Japan, South Korea, India, one Turkish isolate from 2013 and two Spanish isolates recovered in 1992 and 1996 were confirmed as L. garvieae. The remaining isolates from Spain and Türkiye, as well as those from Portugal, Israel, USA, and Greece were identified as L. petauri. Overall, 60.4% of isolates previously identified as L. garvieae were found to be L. petauri. These results confirm the implication of both species in the etiology of lactococcosis and suggest that L. petauri plays a significant role in the epidemiology of this disease. Some of the isolates identified as L. petauri in the present study were isolated three decades ago, indicating that its association with lactococcosis is older than might be expected from the recent descriptions. The commercial Rapid ID32 Strep system was unable to discriminate between L. garvieae and L. petauri. However, both species exhibited some biochemical differences that might serve as phenotypic markers for their presumptive recognition. Consequently, isolates that hydrolyze hippurate and produce acid from sucrose and tagatose could be presumptively recognized as L. petauri, while those that fail these tests could be identified as L. garvieae. The results of this work indicate that great attention should be given to L. petauri in the epidemiology of lactococcosis

    16S-23S rRNA Internal Transcribed Spacer Region (ITS) Sequencing: A Potential Molecular Diagnostic Tool for Differentiating Lactococcus garvieae and Lactococcus petauri

    Get PDF
    Lactococcus garvieae is the etiological agent of lactococcosis, a clinically and economically significant infectious disease affecting farmed rainbow trout. L. garvieae had been considered the only cause of lactococcosis for a long time; however, L. petauri, another species of the genus Lactococcus, has lately been linked to the same disease. The genomes and biochemical profiles of L. petauri and L. garvieae have a high degree of similarity. Traditional diagnostic tests currently available cannot distinguish between these two species. The aim of this study was to use the transcribed spacer (ITS) region between 16S rRNA and 23S rRNA as a potential useful molecular target to differentiate L. garvieae from L. petauri, saving time and money compared to genomics methods currently used as diagnostic tools for accurate discrimination between these two species. The ITS region of 82 strains was amplified and sequenced. The amplified fragments varied in size from 500 to 550 bp. Based on the sequence, seven SNPs were identified that separate L. garvieae from L. petauri. The 16S-23S rRNA ITS region has enough resolution to distinguish between closely related L. garvieae and L. petauri and it can be used as a diagnostic marker to quickly identify the pathogens in a lactococcosis outbreak

    Impacts of dietary forage and crude protein levels on the shedding of Escherichia coli O157:H7 and Listeria in dairy cattle feces

    Get PDF
    Shedding of Escherichia coli O157:H7 and Listeria monocytogenes in ruminant manure is well reported. However, the influence of dietary manipulation on the shedding of the pathogens is not well understood. This study was conducted to improve the understanding of the relationship between dietary feed composition and pathogen shedding in dairy feces, particularly E. coli O157:H7 and L. monocytogenes. Twelve cows were randomly assigned to a 2 × 2 factorial arrangement of 2 dietary forage levels: low forage (37.4% of dry matter [DM]) vs. high forage (HF, 53.3% of DM) and two dietary crude protein (CP) levels: low protein (LP, 15.2% of DM) vs. high protein (HP, 18.5% of DM) in a 4 × 4 replicated Latin square design with four periods each including 15 d adaptation and 3 d sample collection. In CP treatments, significantly low concentrations of L. monocytogenes were observed from cows fed the HP (0.9-1.6 log10 cfu/g) compared to the LP diet (1.3–2.1 log10 cfu/g). Significant interaction effect was observed between dietary forage and crude protein on the presence of E. coli O157:H7 (P < 0.05) but not on L. monocytogenes. On average, the highest E. coli O157:H7 concentration (6.5 log10 cfu/g of feces) was observed from the HF and HP diet and the lowest concentration was 6.2 log10cfu/g from the HF and LP diet. The average L. monocytogenes shedding was within the range of 1.8 to 2.4 log 10cfu/g among the treatments. The study showed that diet has an influence on the shedding of pathogenic bacteria in dairy excreta
    corecore