186 research outputs found

    Probing single biomolecules with atomic force microscopy

    Get PDF
    Fritz J, Anselmetti D, Jarchow J, Fernandez-Busquets X. Probing single biomolecules with atomic force microscopy. Journal of structural biology. 1997;119(2):165-171.During the last years, atomic force microscopy (AFM) has developed from a microscopy tool for solid state surface science towards a method employed in many scientific disciplines such as biology to investigate individual molecules on a nanometer scale. This article describes the current status of the imaging possibilities of AFM on RNA, IgG and gold-labelled cell adhesion molecules, as well as of measurements of intermolecular binding forces between biomolecules in order to investigate their molecular structure, function and elasticity

    Single molecule DNA biophysics with atomic force microscopy

    Get PDF
    Anselmetti D, Fritz J, Smith B, Fernandez-Busquets X. Single molecule DNA biophysics with atomic force microscopy. Single molecules. 2000;1(1):53-58.Structural and functional properties of double stranded deoxyribonucleic acid (dsDNA) are investigated by atomic force microscopy (AFM) on a single molecule level. Here, we characterize different linear and circular DNA systems in terms of their geometry and topology, and visualize enzyme binding of restriction endonuclease Hae III to DNA. Manipulation of single DNA molecules is demonstrated by dissecting individual DNA strands. Furthermore, the elastic response of single DNA molecules to an externally applied force is investigated by AFM force spectroscopy experiments. This gives information about structural properties of the DNA double helix. Specifically, transition from B-form to S-form DNA and a melting transition from double stranded to single stranded DNA is observed. This allows monitoring of specific interaction and binding of small intercalator molecules such as ethidium bromide (EtBr) to DNA by means of a mechanical, non-fluorescent detection scheme

    Self-recognition and Ca2+-dependent carbohydrate–carbohydrate cell adhesion provide clues to the Cambrian explosion

    Get PDF
    Author Posting. © The Authors, 2009. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Molecular Biology and Evolution 26 (2009): 2551-2561, doi:10.1093/molbev/msp170.The Cambrian explosion of life was a relatively short period ca. 540 million years ago that marked a generalized acceleration in the evolution of most animal phyla, but the trigger of this key biological event remains elusive. Sponges are the oldest extant Precambrian metazoan phylum and thus a valid model to study factors that could have unleashed the rise of multicellular animals. One such factor is the advent of self/non-self recognition systems, which would be evolutionarily beneficial to organisms to prevent germ cell parasitism or the introduction of deleterious mutations resulting from fusion with genetically different individuals. However, the molecules responsible for allorecognition probably evolved gradually before the Cambrian period, and some other (external) factor remains to be identified as the missing triggering event. Sponge cells associate through calcium-dependent, multivalent carbohydrate-carbohydrate interactions of the g200 glycan found on extracellular proteoglycans. Single molecule force spectroscopy analysis of g200-g200 binding indicates that calcium affects the lifetime (+Ca/-Ca: 680 s/3 s) and bond reaction length (+Ca/-Ca: 3.47 Å/2.27 Å). Calculation of mean g200 dissociation times in low and high calcium within the theoretical framework of a cooperative binding model indicates the non-linear and divergent characteristics leading to either disaggregated cells or stable multicellular assemblies, respectively. This fundamental phenomenon can explain a switch from weak to strong adhesion between primitive metazoan cells caused by the well documented rise in ocean calcium levels at the end of Precambrian time. We propose that stronger cell adhesion allowed the integrity of genetically uniform animals composed only of “self” cells, facilitating genetic constitutions to remain within the metazoan individual and be passed down inheritance lines. The Cambrian explosion might have been triggered by the coincidence in time of primitive animals endowed with self/non-self recognition, and of a surge in sea water calcium that increased the binding forces between their calcium-dependent cell adhesion molecules.D.A. and A.K. acknowledge financial support from the Collaborative Research Center SFB 613 from the Deutsche Forschungsgemeinschaft (DFG), and X.F.-B. acknowledges financial support from grants BIO2002-00128, BIO2005-01591, and CSD2006-00012 from the Ministerio de Ciencia y TecnologĂ­a, Spain, which included Fondo Europeo de Desarrollo Regional funds, and from grant 2005SGR-00037 from the Generalitat de Catalunya, Spain

    Proteoglycan mechanics studied by single-molecule force spectroscopy of allotypic cell adhesion glycans

    Get PDF
    Author Posting. © American Society for Biochemistry and Molecular Biology, 2006. This article is posted here by permission of American Society for Biochemistry and Molecular Biology for personal use, not for redistribution. The definitive version was published in Journal of Biological Chemistry 281 (2006): 5992-5999, doi:10.1074/jbc.M507878200.Early Metazoans had to evolve the first cell adhesion system addressed to maintaining stable interactions between cells constituting different individuals. As the oldest extant multicellular animals, sponges are good candidates to have remnants of the molecules responsible for that crucial innovation. Sponge cells associate in a species-specific process through multivalent calcium-dependent interactions of carbohydrate structures on an extracellular membrane-bound proteoglycan termed aggregation factor. Single-molecule force spectroscopy studies of the mechanics of aggregation factor self-binding indicate the existence of intermolecular carbohydrate adhesion domains. A 200-kDa aggregation factor glycan (g200) involved in cell adhesion exhibits interindividual differences in size and epitope content which suggest the existence of allelic variants. We have purified two of these g200 distinct forms from two individuals of the same sponge species. Comparison of allotypic versus isotypic g200 binding forces reveals significant differences. Surface plasmon resonance measurements show that g200 self-adhesion is much stronger than its binding to other unrelated glycans such as chondroitin sulfate. This adhesive specificity through multiple carbohydrate binding domains is a type of cooperative interaction that can contribute to explain some functions of modular proteoglycans in general. From our results it can be deduced that the binding strength/surface area between two aggregation factor molecules is comparable with that of focal contacts in vertebrate cells, indicating that strong carbohydrate-based cell adhesions evolved at the very start of Metazoan history.This work was supported in part by Grants BIO2002-00128 and BIO2005-01591 (both to X. F.-B.) from the Ministerio de EducacioŽn y Ciencia, Spain, which included Fondo Europeo de Desarrollo Regional funds

    Loading of beclomethasone in liposomes and hyalurosomes improved with mucin as effective approach to counteract the oxidative stress generated by cigarette smoke extract

    Get PDF
    In this work beclomethasone dipropionate was loaded into liposomes and hyalurosomes modified with mucin to improve the ability of the payload to counteract the oxidative stress and involved damages caused by cigarette smoke in the airway. The vesicles were prepared by dispersing all components in the appropriate vehicle and sonicating them, thus avoiding the use of organic solvents. Unilamellar and bilamellar vesicles small in size (~117 nm), homogeneously dispersed (polydispersity index lower than 0.22) and negatively charged (~−11 mV), were obtained. Moreover, these vesicle dispersions were stable for five months at room temperature (~25◩C). In vitro studies performed using the Next Generation Impactor confirmed the suitability of the formulations to be nebulized as they were capable of reaching the last stages of the impactor that mimic the deeper airways, thus improving the deposition of beclomethasone in the target site. Further, biocompatibility studies performed by using 16HBE bronchial epithelial cells confirmed the high biocompatibility and safety of all the vesicles. Among the tested formulations, only mucin-hyalurosomes were capable of effectively counteracting the production of reactive oxygen species (ROS) induced by cigarette smoke extract, suggesting that this formulation may represent a promising tool to reduce the damaging effects of cigarette smoke in the lung tissues, thus reducing the pathogenesis of cigarette smoke-associated diseases such as chronic obstructive pulmonary disease, emphysema, and cancer

    Liposomal Formulations to Improve Antioxidant Power of Myrtle Berry Extract for Potential Skin Application

    Get PDF
    Many substances in plant extracts are known for their biological activities. These substances act in different ways, exerting overall protective effects against many diseases, especially skin disorders. However, plant extracts’ health benefits are often limited by low bioavailability. To overcome these limitations, drug delivery systems can be employed. In this study, we evaluated the antioxidant power of an ethanolic extract from Myrtus communis L. (myrtle) berries through colorimetric tests (DPPH and FRAP). The antioxidant activity was also verified by using fibroblast cell culture through cellular Reactive Oxygen Species (ROS) levels measurements. Moreover, the myrtle extract was formulated in phospholipid vesicles to improve its bioavailability and applicability. Myrtle liposomes were characterized by size, surface charge, storage stability, and entrapment efficiency; visualized by using cryo-TEM images; and assayed for cytocompatibility and anti-ROS activity. Our results suggest that myrtle liposomes were cytocompatible and improved the extract’s antioxidant power in fibroblasts, suggesting a potential skin application for these formulations and confirming that nanotechnologies could be a valid tool to enhance plant extracts’ potentialities

    Electrochemical POC device for fast malaria quantitative diagnosis in whole blood by using magnetic beads, Poly-HRP and microfluidic paper electrodes

    Get PDF
    © 2019 Elsevier B.V. Malaria, a parasitic infection caused by Plasmodium parasites and transmitted through the bite of infected female Anopheles mosquitos, is one of the main causes of mortality in many developing countries. Over 200 million new infections and nearly half a million deaths are reported each year, and more than three billion people are at risk of acquiring malaria worldwide. Nevertheless, most malaria cases could be cured if detected early. Malaria eradication is a top priority of the World Health Organisation. However, achieving this goal will require mass population screening and treatment, which will be hard to accomplish with current diagnostic tools. We report an electrochemical point-of-care device for the fast, simple and quantitative detection of Plasmodium falciparum lactate dehydrogenase (PfLDH) in whole blood samples. Sample analysis includes 5-min lysis to release intracellular parasites, and stirring for 5 more min with immuno-modified magnetic beads (MB) along with an immuno-modified signal amplifier. The rest of the magneto-immunoassay, including sample filtration, MB washing and electrochemical detection, is performed at a disposable paper electrode microfluidic device. The sensor provides PfLDH quantitation down to 2.47 ng mL−1 in spiked samples and for 0.006–1.5% parasitemias in Plasmodium-infected cultured red blood cells, and discrimination between healthy individuals and malaria patients presenting parasitemias >0.3%. Quantitative malaria diagnosis is attained with little user intervention, which is not achieved by other diagnostic methods

    Copolimeri ad innesto PLGA-g-PVP per la veicolazione e il rilascio controllato di farmaci antimalariali

    Get PDF
    I copolimeri PLGA-g-PVP, aventi una catena di PLGA centrale ad alto peso molecolare e segmenti laterali oligomerici di PVP sono state recentemente sintetizzati tramite un processo sintetico a singolo step. La reazione consiste in una polimerizzazione a trasferimento di catena del N-vinilpirrolidone (N-VP) a partire da PLGA fuso, in presenza di un iniziatore radicalico quale \ue8 l\u2019AIBN (azobisisobutirronitrile). Diverse percentuali di PVP sono state innestati sulla catena principale, in modo da variare l\u2019idrofilia del copolimero. Lo scopo di questo lavoro \ue8 stato quello di formulare tali copolimeri PLGA-g-PVP in presenza di farmaci idrofobici, quali l\u2019artemisinina e la curcumina, sotto forma di nanocapsule da utilizzare come sospensioni antimalariche

    Extracellular Vesicles Derived from Plasmodium-infected and Non-infected Red Blood Cells as Targeted Drug Delivery Vehicles

    Get PDF
    Among several factors behind drug resistance evolution in malaria is the challenge of administering overall doses that are not toxic for the patient but that, locally, are sufficiently high to rapidly kill the parasites. Thus, a crucial antimalarial strategy is the development of drug delivery systems capable of targeting antimalarial compounds to Plasmodium with high specificity. In the present study, extracellular vesicles (EVs) have been evaluated as a drug delivery system for the treatment of malaria. EVs derived from naive red blood cells (RBCs) and from Plasmodium falciparum-infected RBCs (pRBCs) were isolated by ultrafiltration followed by size exclusion chromatography. Lipidomic characterization showed that there were no significant qualitative differences between the lipidomic profiles of pRBC-derived EVs (pRBC-EVs) and RBC-derived EVs (RBC-EVs). Both EVs were taken up by RBCs and pRBCs, although pRBC-EVs were more efficiently internalized than RBC-EVs, which suggested their potential use as drug delivery vehicles for these cells. When loaded into pRBC-EVs, the antimalarial drugs atovaquone and tafenoquine inhibited in vitro P. falciparum growth more efficiently than their free drug counterparts, indicating that pRBC-EVs can potentially increase the efficacy of several small hydrophobic drugs used for the treatment of malaria
    • 

    corecore