151 research outputs found

    Toward Digitalization of Fishing Vessels to Achieve Higher Environmental and Economic Sustainability

    Get PDF
    \ua9 2024 The Authors. Published by American Chemical Society. Fishing vessels need to adapt to and mitigate climate changes, but solution development requires better information about the environment and vessel operations. Even if ships generate large amounts of potentially useful data, there is a large variety of sources and formats. This lack of standardization makes identification and use of key data challenging and hinders its use in improving operational performance and vessel design. The work described in this paper aims to provide cost-effective tools for systematic data acquisition for fishing vessels, supporting digitalization of the fishing vessel operation and performance monitoring. This digitalization is needed to facilitate the reduction of emissions as a critical environmental problem and industry costs critical for industry sustainability. The resulting monitoring system interfaces onboard systems and sensors, processes the data, and makes it available in a shared onboard data space. From this data space, 209 signals are recorded at different frequencies and uploaded to onshore servers for postprocessing. The collected data describe both ship operation, onboard energy system, and the surrounding environment. Nine of the oceanographic variables have been preselected to be potentially useful for public scientific repositories, such as Copernicus and EMODnet. The data are also used for fuel prediction models, species distribution models, and route optimization models

    Enhancement of Water Transport and Microstructural Changes Induced by High-Intesity Ultrasound Application on Orange Peel Drying

    Full text link
    The main aim of this work was to evaluate the effect of high-intensity ultrasound (US) on the drying kinetics of orange peel as well as its influence on the microstructural changes induced during drying. Convective drying kinetics of orange peel slabs were carried out at a relative humidity of 26.5±0.9%, 40 °C and 1 m/s with (AIR+US) and without (AIR) ultrasound application. In order to identify the US effect on water transport, drying kinetics were analyzed by taking the diffusion theory into account. Fresh, AIR and AIR+US dried samples were analyzed using Cryo-Scanning Electron Microscopy. Results showed that the drying kinetics of orange peel were significantly improved by US application, which involved a significant (p<0.05) improvement of mass transfer coefficient and effective moisture diffusivity. The effects on mass transfer properties were confirmed with microstructural observations. In the cuticle surface of flavedo, the pores were obstructed by the spread of the waxy components, this fact evidencing US effects on the air solid interfaces. Furthermore, the cells of the albedo were disrupted by US, as it created large intercellular air spaces facilitating water transfer through the tissue.The authors would like to acknowledge the financial support of MICINN and CEE (European Regional Development Fund) from projects Ref. DPI2009-14549-C04-04, PSE-060000-2009-003, and FP6-2004-FOOD-23140 HIGHQ RTE.García Pérez, JV.; Ortuño Cases, C.; Puig Gómez, CA.; Cárcel Carrión, JA.; Pérez Munuera, IM. (2012). Enhancement of Water Transport and Microstructural Changes Induced by High-Intesity Ultrasound Application on Orange Peel Drying. Food and Bioprocess Technology. 5(6):2256-2265. https://doi.org/10.1007/s11947-011-0645-0S2256226556Alandes, L., Perez-Munuera, I., Llorca, E., Quiles, A., & Hernando, I. (2009). Use of calcium lactate to improve structure of “Flor de Invierno” fresh-cut pears. Postharvest Biology and Technology, 53(3), 145–151.Anagnostopoulou, M. A., Kefalas, P., Papageorgiou, V. P., Assimopoulou, A. N., & Boskou, D. (2006). Radical scavenging activity of various extracts and fractions of sweet orange peel (Citrus sinensis). Food Chemistry, 94(1), 19–25.AOAC. (1997). Official methods of analysis. Arlington: Association of Official Analytical Chemist.Arslan, D., Özcan, M. M. (2011). Evaluation of drying methods with respect to drying kinetics, mineral content, and color characteristics of savory leaves. Food and Bioprocess Technology. doi: 10.1007/s11947-010-0498-y , in press.Cárcel, J. A., Garcia-Perez, J. V., Riera, E., & Mulet, A. (2007). Influence of high intensity ultrasound on drying kinetics of persimmon. Drying Technology, 25(1), 185–193.Chafer, M., Gonzalez-Martinez, C., Chiralt, A., & Fito, P. (2003). Microstructure and vacuum impregnation response of citrus peles. Food Research International, 36(1), 35–41.Chau, C., Sheu, F., Huang, Y., & Su, L. (2005). Improvement in intestinal function and health by the peel fibre derived from Citrus sinensis L cv Liucheng. Journal of the Science of Food & Agriculture, 85(7), 1211–1216.Crank J. (1975). The Mathematics of diffusion. Oxford (2nd ed.), UK: Clarendon Press.Cruz, R. M. S., Vieira, M. C., Fonseca, S. C., Silva, C. L. M. (2010). Impact of thermal blanching and thermosonication treatments on watercress (Nasturtium officinale) quality: thermosonication process optimization and microstructure evaluation. Food and Bioprocess Technology. doi: 10.1007/s11947-009-0220-0 , in press.Delgado, A. E., Zheng, L., & Sun, D.-W. (2010). Influence of ultrasound on freezing rate of immersion-frozen apples. Food and Bioprocess Technology, 2(3), 263–270.FAOSTAT (2010). FAO Statistical Databases. Food and Agriculture of the United Nations. Available at: http://faostat.fao.org/site/291/default.aspx . Accessed 15 January 2010.Fernandes, F. A. N., Gallao, M. I., & Rodrigues, S. (2008a). Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: Melon dehydration. Food Science and Technology, 41(4), 604–610.Fernandes, F. A. N., Oliveira, F. I. P., & Rodrigues, S. (2008b). Use of ultrasound for dehydration of papayas. Food and Bioprocess Technology, 1(4), 339–345.Gabaldon-Leyva, C. A., Quintero-Ramos, A., Barnard, J., Balandrán-Quintana, R., Talamás-Abbud, R., & Jiménez-Castro, J. (2007). Effect of ultrasound on the mass transfer and physical changes in brine bell pepper at different temperatures. Journal of Food Engineering, 81(2), 374–379.Gallego-Juárez, J. A. (1998). Some applications of air-borne power ultrasound to food processing. In M. J. W., Povey, T. J. Mason (Eds.), Ultrasound in Food Processing. UK: London, Chapman & Hall.Gallego-Juárez, J. A., Rodríguez-Corral, G., Gálvez-Moraleda, J. C., & Yang, T. S. (1999). A new high intensity ultrasonic technology for food dehydration. Drying Technology, 17(3), 597–608.Garau, M. C., Simal, S., Femenia, A., & Rosselló, C. (2006). Drying of orange skin: drying kinetics modelling and functional properties. Journal of Food Engineering, 75(2), 288–295.Garau, M. C., Simal, S., Rossello, C., & Femenia, A. (2007). Effect of air-drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food Chemistry, 104(3), 1014–1024.Garcia-Perez, J. V., Cárcel, J. A., De la Fuente, S., & Riera, E. (2006). Ultrasonic drying of foodstuff in a fluidized bed. Parametric study. Ultrasonics, 44, 539–543.Garcia-Perez, J. V., Cárcel, J. A., Benedito, J., & Mulet, A. (2007). Power ultrasound mass transfer enhancement in food drying. Food and Bioproducts Proccessing, 85(3), 247–254.Guiné, R. P. F., Henrriques, F., Barroca, M. J. (2010). Mass transfer coefficients for the drying of pumpkin (Cucurbita moschata) and dried product quality. Food and Bioprocess Technology. doi: 10.1007/s11947-009-0275 , in press.Khalloufi, S., Almeida-Rivera, C., & Bongers, P. (2009). A theoretical model and its experimental validation to predict the porosity as a function of shrinkage and collapse phenomena during drying. Food Research International, 42(8), 1122–1130.Larrauri, J. A., Rupérez, P., Bravo, L., & Saura-Calixto, F. (1996). High dietary fibre powders from orange and lime peels: associated polyphenols and antioxidant capacity. Food Research International, 29(8), 757–762.Mujumdar, A. S., & Law, C. L. (2010). Drying technology: trends and applications in postharvest processing. Food and Bioprocess Technology, 3(6), 843–852.Mulet, A., Blasco, M., García-Reverter, J., & Garcia-Perez, J. V. (2005). Drying kinetics of Curcuma longa rhizomes. Journal of Food Science, 7(5), 318–323.Oliveira, F. I. P., Gallao, M. I., Rodrigues, S., Fernandes, F.A.N. (2010). Dehydration of malay apple (Syzygium malaccense L.) using ultrasound as a pretreatment. Food and Bioprocess Technology. doi: 10.1007/s11947-010-0351-3 , in press.Ortuño, C., Perez-Munuera, I., Puig, A., Riera, E., & Garcia-Perez, J.V. (2010). Influence of power ultrasound application on mass transport and microstructure of orange peel during hot air drying. Physics Procedia, 3, 153–159.Perry, R. H. & Chilton, C. H. (1973). Chemical Engineers’ Handbook. McGraw Hill (5th ed.), New York, US.Ruiz-López, I. I., Castillo-Zamudio, R. I., Salgado-Cervantes, M. A., Rodríguez-Jimenes, G. C., & García-Alvarado, M. A. (2010). Mass transfer modelling during osmotic dehydration of hexahedral pineapple slices in limited volume solutions. Food and Bioprocess Technology, 3(3), 427–433.Salvador, A., Salvador, L., Besada, C., Larrea, V., Hernando, I., & Perez-Munuera, I. (2008). Reduced effectiveness of the treatment for removing astringency in persimmon fruit when stored at 15 °C: Physiological and microstructural study. Postharvest Biology and Technology, 49(3), 340–347.Sanchez, E. S., Simal, S., Femenía, A., Benedito, J., & Roselló, C. (2001). Effect of acoustic brining on lipolysis and on sensory characteristics of Mahon cheese. Journal of Food Science, 66(6), 892–896.Sanchez, E. S., Simal, S., Femenía, A., Llul, P., & Roselló, C. (2001). Proteolysis of Mahon cheese as affected by acoustic-assited brining. European Food Research and Technology, 212(2), 147–152.Sharma, A., & Gupta, M. N. (2006). Ultrasonic pre-irradiation effect upon aqueous enzymatic oil extraction from almond and apricot seeds. Ultrasonics Sonochemistry, 13(6), 529–534.Simal, S., Rosello, C., & Mulet, A. (1998). Modelling of air drying in regular shaped bodies. Trends in Chemical Engineering, 4(4), 171–180.Simal, S., Femenia, A., & Garcia-Pascual, P. (2003). Simulation of the drying curves of a meat-based product: effect of the external resistance to mass transfer. Journal of Food Engineering, 58(2), 193–199.Singh, R. P., & Heldman, D. R. (2001). Introduction to Food Engineering. Academic Press (3rd ed.): San Diego.Toma, M., Vinatoru, M., Paniwnyk, L., & Mason, T. J. (2001). Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrasonics Sonochemistry, 8(2), 137–142

    Ecosystem indicators to measure the effectiveness of marine nature-based solutions on society and biodiversity under climate change

    Get PDF
    An assessment framework of marine ecosystem services (ES) indicators to quantify the socio-ecological effectiveness of nature-based solutions (NBS) and nature-inclusive harvesting (NIH) under climate-driven changes was developed. It creates a common understanding about the health status of ecosystems, their services (ES), and the impact of implementing NBS&NIH to inform policymakers and the public. The two NBS considered were restoration and conservation which need to be performed considering the sustainable harvesting of marine resources (NIH). The interaction between the biodiversity indicators with the socioeconomic, response and pressure indicators was established using the ES cascade. However, it was also linked to other environmental (e.g., DAPSI(W)R(M)) and economic frameworks such as the Standard National Account (SNA) and the System of Environment Economic Accounting (SEEA). A set of 155 multidisciplinary indicators were identified through a literature review and their effectiveness in measuring ES under changing climate. Biodiversity & environmental as well as Pressure indicators are the most numerous in the list representing 34 % and 23 % of the total respectively, while only 12 % of the used Indicators below to the economic dimension. Socioeconomic indicators considering CC are rarely contemplated, except for a short list redefining output and demand approach indicators to aggregate a carbon footprint valuation. For cultural services economic indicators dominate, whereas sparse for provisioning and regulating. The 70 % of the selected indicators were also empirically verified with 27 European storylines. Storylines have high coverage of biodiversity, environmental indicators, and CC indicators (91 %), lower coverage of economic (71 %) and poorer related to social (31 %) indicators. Harvest, pressure and/or habitats are clearly the groups of indicators majority used when evaluating the ES on marine and coastal ecosystems both in terms of the number of used indicators but also, the frequency of use. Despite the increase of ES research, this study identifies 14 substantial gaps or weaknesses limiting the guidance for NBS&NIH implementation derived from the employment of an unbalanced (between dimensions and key groups) number of quantitative indicators

    Cross-basin and cross-taxa patterns of marine community tropicalization and deborealization in warming European seas

    Get PDF
    Ocean warming and acidification, decreases in dissolved oxygen concentrations, and changes in primary production are causing an unprecedented global redistribution of marine life. The identification of underlying ecological processes underpinning marine species turnover, particularly the prevalence of increases of warm-water species or declines of cold-water species, has been recently debated in the context of ocean warming. Here, we track changes in the mean thermal affinity of marine communities across European seas by calculating the Community Temperature Index for 65 biodiversity time series collected over four decades and containing 1,817 species from different communities (zooplankton, coastal benthos, pelagic and demersal inverte�brates and fish). We show that most communities and sites have clearly responded to ongoing ocean warming via abundance increases of warm-water species (tropicalization, 54%) and decreases of cold-water species (debor�ealization, 18%). Tropicalization dominated Atlantic sites compared to semi�enclosed basins such as the Mediterranean and Baltic Seas, probably due to physical barrier constraints to connectivity and species colonization. Semi�enclosed basins appeared to be particularly vulnerable to ocean warming, experiencing the fastest rates of warming and biodiversity loss through deborealization

    Testing a global standard for quantifying species recovery and assessing conservation impact

    Get PDF
    Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a “Green List of Species” (now the IUCN Green Status of Species). A draft Green Status framework for assessing species’ progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species’ viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species’ recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard

    Measurement and interpretation of same-sign W boson pair production in association with two jets in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents the measurement of fducial and diferential cross sections for both the inclusive and electroweak production of a same-sign W-boson pair in association with two jets (W±W±jj) using 139 fb−1 of proton-proton collision data recorded at a centre-of-mass energy of √s = 13 TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed by selecting two same-charge leptons, electron or muon, and at least two jets with large invariant mass and a large rapidity diference. The measured fducial cross sections for electroweak and inclusive W±W±jj production are 2.92 ± 0.22 (stat.) ± 0.19 (syst.)fb and 3.38±0.22 (stat.)±0.19 (syst.)fb, respectively, in agreement with Standard Model predictions. The measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confdence level intervals on dimension-8 operators. A search for doubly charged Higgs bosons H±± that are produced in vector-boson fusion processes and decay into a same-sign W boson pair is performed. The largest deviation from the Standard Model occurs for an H±± mass near 450 GeV, with a global signifcance of 2.5 standard deviations

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, , and tb) or third-generation leptons (τν and ττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion
    corecore