120 research outputs found
The Microbiome of an Active Meat Curing Brine
Traditional food products are important to our culture and heritage, and to the continued success of the food industry. Many of the production processes associated with these products have not been subjected to an in-depth microbial compositional analysis. The traditional process of curing meat, both preserves a natural protein source, as well as increasing its organoleptic qualities. One of the most important salting processes is known as Wiltshire curing. The Wiltshire process involves injecting pork with a curing solution and immersing the meat into microbial-rich brine which promotes the development of the distinct organoleptic characteristics. The important microbial component of Wiltshire brine has not been extensively characterized. We analyzed the key microbial component of Wiltshire brine by performing microbiome analysis using Next Generation Sequencing (NGS) technologies. This analysis identified the genera, Marinilactibacillus, Carnobacterium, Leuconostoc, and Vibrio as the core microflora present in Wiltshire curing brine. The important food industrial applications of these bacteria were also assessed. The bacterial diversity of the brine was investigated, and the community composition of the brine was demonstrated to change over time. New knowledge on the characterization of key microbiota associated with a productive Wiltshire brine is an important development linked to promoting enhanced quality and safety of meat processing in the food industry
Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria
<p>Abstract</p> <p>Background</p> <p>Catabolite repression control (CRC) is an important global control system in <it>Pseudomonas </it>that fine tunes metabolism in order optimise growth and metabolism in a range of different environments. The mechanism of CRC in <it>Pseudomonas </it>spp. centres on the binding of a protein, Crc, to an A-rich motif on the 5' end of an mRNA resulting in translational down-regulation of target genes. Despite the identification of several Crc targets in <it>Pseudomonas </it>spp. the Crc regulon has remained largely unexplored.</p> <p>Results</p> <p>In order to predict direct targets of Crc, we used a bioinformatics approach based on detection of A-rich motifs near the initiation of translation of all protein-encoding genes in twelve fully sequenced <it>Pseudomonas </it>genomes. As expected, our data predict that genes related to the utilisation of less preferred nutrients, such as some carbohydrates, nitrogen sources and aromatic carbon compounds are targets of Crc. A general trend in this analysis is that the regulation of transporters is conserved across species whereas regulation of specific enzymatic steps or transcriptional activators are often conserved only within a species. Interestingly, some nucleoid associated proteins (NAPs) such as HU and IHF are predicted to be regulated by Crc. This finding indicates a possible role of Crc in indirect control over a subset of genes that depend on the DNA bending properties of NAPs for expression or repression. Finally, some virulence traits such as alginate and rhamnolipid production also appear to be regulated by Crc, which links nutritional status cues with the regulation of virulence traits.</p> <p>Conclusions</p> <p>Catabolite repression control regulates a broad spectrum of genes in <it>Pseudomonas</it>. Some targets are genus-wide and are typically related to central metabolism, whereas other targets are species-specific, or even unique to particular strains. Further study of these novel targets will enhance our understanding of how <it>Pseudomonas </it>bacteria integrate nutritional status cues with the regulation of traits that are of ecological, industrial and clinical importance.</p
Genome Sequence of Paracoccus sp. JM45, a Bacterial Strain Isolated from a Marine Sponge with a Dual Quorum Sensing Inhibition Activity.
The draft genome sequence of Paracoccus sp. strain JM45, isolated from a marine sponge harvested off the west coast of Ireland, is reported here. Quorum sensing and quorum sensing inhibition activities have been reported recently for this bacterium, and genomic analysis supports its potential use for novel therapeutic development
Coumarin: a novel player in microbial quorum sensing and biofilm formation inhibition
Antibiotic resistance is a growing threat worldwide, causing serious problems in the treatment of microbial infections. The discovery and development of new drugs is urgently needed to overcome this problem which has greatly undermined the clinical effectiveness of conventional antibiotics. An intricate cell-cell communication system termed quorum sensing (QS) and the coordinated multicellular behaviour of biofilm formation have both been identified as promising targets for the treatment and clinical management of microbial infections. QS systems allow bacteria to adapt rapidly to harsh conditions, and are known to promote the formation of antibiotic tolerant biofilm communities. It is well known that biofilm is a recalcitrant mode of growth and it also increases bacterial resistance to conventional antibiotics. The pharmacological properties of coumarins have been well described, and these have included several that possess antimicrobial properties. More recently, reports have highlighted the potential role of coumarins as alternative therapeutic strategies based on their ability to block the QS signalling systems and to inhibit the formation of biofilms in clinically relevant pathogens. In addition to human infections, coumarins have also been found to be effective in controlling plant pathogens, infections in aquaculture, food spoilage and in reducing biofouling caused by eukaryotic organisms. Thus, the coumarin class of small molecule natural product are emerging as a promising strategy to combat bacterial infections in the new era of antimicrobial resistance
Exposure to bile leads to the emergence of adaptive signalling variants in the opportunistic pathogen Pseudomonas aeruginosa
The chronic colonization of the respiratory tract by the opportunistic pathogen Pseudomonas aeruginosa is the primary cause of morbidity and mortality in cystic fibrosis (CF) patients. P. aeruginosa has been shown to undergo extensive genomic adaptation facilitating its persistence within the CF lung allowing it to evade the host immune response and outcompete co-colonizing residents of the lung microbiota. However, whilst several studies have described the various mutations that frequently arise in clinical isolates of P. aeruginosa, the environmental factors governing the emergence of these genetic variants is less well characterized. Gastro-oesophageal reflux has recently emerged as a major co-morbidity in CF and is often associated with the presence of bile acids in the lungs most likely by (micro) aspiration. In order to investigate whether bile may select for genetic variants, P. aeruginosa was experimentally evolved in artificial sputum medium, a synthetic media resembling environmental conditions found within the CF lung. Pigmented derivatives of P. aeruginosa emerged exclusively in the presence of bile. Genome sequencing analysis identified single nucleotide polymorphisms (SNPs) in quorum sensing (lasR) and both the pyocyanin (phzS) and pyomelanin (hmgA) biosynthetic pathways. Phenotypic analysis revealed an altered bile response when compared to the ancestral P. aeruginosa progenitor strain. While the recovered pigmented derivatives retained the bile mediated suppression of swarming motility and enhanced antibiotic tolerance, the biofilm, and redox responses to bile were abolished in the adapted mutants. Though loss of pseudomonas quinolone signal (PQS) production in the pigmented isolates was not linked to the altered biofilm response, the loss of redox repression could be explained by defective alkyl-quinolone (AQ) production in the presence of bile. Collectively, these findings suggest that the adaptive variants of P. aeruginosa that arise following long term bile exposure enables the emergence of ecologically competitive sub-populations. Altered pigmentation and AQ signaling may contribute to an enhancement in fitness facilitating population survival within a bile positive environment
Rethinking the bile acid/gut microbiome axis in cancer
Dietary factors, probiotic agents, aging and antibiotics/medicines impact on gut microbiome composition leading to disturbances in localised microbial populations. The impact can be profound and underlies a plethora of human disorders, including the focus of this review; cancer. Compromised microbiome populations can alter bile acid signalling and produce distinct pathophysiological bile acid profiles. These in turn have been associated with cancer development and progression. Exposure to high levels of bile acids, combined with localised molecular/genome instability leads to the acquisition of bile mediated neoplastic alterations, generating apoptotic resistant proliferation phenotypes. However, in recent years, several studies have emerged advocating the therapeutic benefits of bile acid signalling in suppressing molecular and phenotypic hallmarks of cancer progression. These studies suggest that in some instances, bile acids may reduce cancer phenotypic effects, thereby limiting metastatic potential. In this review, we contextualise the current state of the art to propose that the bile acid/gut microbiome axis can influence cancer progression to the extent that classical in vitro cancer hallmarks of malignancy (cell invasion, cell migration, clonogenicity, and cell adhesion) are significantly reduced. We readily acknowledge the existence of a bile acid/gut microbiome axis in cancer initiation, however, in light of recent advances, we focus exclusively on the role of bile acids as potentially beneficial molecules in suppressing cancer progression. Finally, we theorise that suppressing aggressive malignant phenotypes through bile acid/gut microbiome axis modulation could uncover new and innovative disease management strategies for managing cancers in vulnerable cohort
Isoquercetin and inulin synergistically modulate the gut microbiome to prevent development of the metabolic syndrome in mice fed a high fat diet
Dietary fibre positively influences gut microbiome composition, enhancing the metabolism of dietary flavonoids to produce bioactive metabolites. These synergistic activities facilitate the beneficial effects of dietary flavonoids on cardiometabolic health parameters. The aims of this study were to investigate whether isoquercetin (a major dietary flavonoid) and inulin (soluble fibre), either alone or in combination could improve features of the metabolic syndrome. Following a 1 week acclimatization, Male C57BL6 mice (6-8 weeks) were randomly assigned to; (i) normal chow diet (n = 10), (ii) high fat (HF) diet (n = 10), (iii) HF diet + 0.05% isoquercetin (n = 10), (iv) HF diet + 5% inulin, or (v) HF diet + 0.05% isoquercetin + 5% inulin (n = 10). Body weight and food intake were measured weekly. At 12 weeks, glucose and insulin tolerance tests were performed, and blood, faecal samples, liver, skeletal muscle and adipose tissue were collected. At 12 weeks, mice on the HF diet had significantly elevated body weights as well as impaired glucose tolerance and insulin sensitivity compared to the normal chow mice. Supplementation with either isoquercetin or inulin had no effect, however mice receiving the combination had attenuated weight gain, improved glucose tolerance and insulin sensitivity, reduced hepatic lipid accumulation, adipocyte hypertrophy, circulating leptin and adipose FGF21 levels, compared to mice receiving the HF diet. Additionally, mice on the combination diet had improvements in the composition and functionality of their gut microbiome as well as production of short chain fatty acids. In conclusion, long-term supplementation with the dietary flavonoid isoquercetin and the soluble fibre inulin can attenuate development of the metabolic syndrome in mice fed a high fat diet. This protective effect appears to be mediated, in part, through beneficial changes to the microbiome
The gut microbiome and atherosclerosis: current knowledge and clinical potential
Cardiovascular disease (CVD) is the leading cause of death worldwide. The human body is populated by a diverse community of microbes, dominated by bacteria, but also including viruses and fungi. The largest and most complex of these communities is located in the gastrointestinal system and with their associated genome, are known as the gut microbiome. Gut microbiome perturbations and related dysbiosis have been implicated in the progression and pathogenesis of CVD, including atherosclerosis, hypertension and heart failure. Although there have been advances in the characterisation and analysis of the gut microbiota and associated bacterial metabolites, the exact mechanisms through which they exert their action is not well understood. This review will focus on the role of the gut microbiome and associated functional components in the development and progression of atherosclerosis. Potential treatments to alter the gut microbiome to prevent or treat atherosclerosis and CVD are also discussed
Dissecting the regulation of bile-induced biofilm formation in Staphylococcus aureus
Aspiration of bile into the cystic fibrosis (CF) lung has emerged as a prognostic factor for reduced microbial lung biodiversity and the establishment of often fatal, chronic pathogen infections. Staphylococcus aureus is one of the earliest pathogens detected in the lungs of children with CF, and once established as a chronic infection, strategies for its eradication become limited. Several lung pathogens are stimulated to produce biofilms in vitro in the presence of bile. In this study, we further investigated the effects of bile on S. aureus biofilm formation. Most clinical S. aureus strains and the laboratory strain RN4220 were stimulated to form biofilms with sub-inhibitory concentrations of bovine bile. Additionally, we observed bile-induced sensitivity to aminoglycosides, which we exploited in a bursa aurealis transposon screen to isolate mutants reduced in aminoglycoside sensitivity and augmented in bile-induced biofilm formation. We identified five mutants that exhibited hypersensitivity to bile with respect to bile-induced biofilm formation, three of which carried transposon insertions within gene clusters involved in wall teichoic acid (WTA) biosynthesis or transport. Strain TM4 carried an insertion between the divergently oriented tagH and tagG genes, which encode the putative WTA membrane translocation apparatus. Ectopic expression of tagG in TM4 restored a wild-type bile-induced biofilm response, suggesting that reduced translocation of WTA in TM4 induced sensitivity to bile and enhanced the bile-induced biofilm formation response. We propose that WTA may be important for protecting S. aureus against exposure to bile and that bile-induced biofilm formation may be an evolved response to protect cells from bile-induced cell lysis
Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction
Background: Pseudomonas fluorescens F113 is a plant growth-promoting rhizobacterium (PGPR) isolated from the sugar-beet rhizosphere. This bacterium has been extensively studied as a model strain for genetic regulation of secondary metabolite production in P. fluorescens, as a candidate biocontrol agent against phytopathogens, and as a heterologous host for expression of genes with biotechnological application. The F113 genome sequence and annotation has been recently reported.Results: Comparative analysis of 50 genome sequences of strains belonging to the P. fluorescens group has revealed the existence of five distinct subgroups. F113 belongs to subgroup I, which is mostly composed of strains classified as P. brassicacearum. The core genome of these five strains is highly conserved and represents approximately 76% of the protein-coding genes in any given genome. Despite this strong conservation, F113 also contains a large number of unique protein-coding genes that encode traits potentially involved in the rhizocompetence of this strain. These features include protein coding genes required for denitrification,diterpenoids catabolism, motility and chemotaxis, protein secretion and production of antimicrobial compounds and insect toxins.Conclusions: The genome of P. fluorescens F113 is composed of numerous protein-coding genes, not usually found together in previously sequenced genomes, which are potentially decisive during the colonisation of the rhizosphere and/or interaction with other soil organisms. This includes genes encoding proteins involved in the production of a second flagellar apparatus, the use of abietic acid as a growth substrate, the complete denitrification pathway, the possible production of a macrolide antibiotic and the assembly of multiple proteinsecretion systems
- …