1 research outputs found
Type III aortic arch angulation increases aortic stiffness: Analysis from an ex vivo porcine modelCentral MessagePerspective
Objective: The relationship among increased aortic arch angulation, aortic flow dynamics, and vessel wall stiffness remains unclear. This experimental ex vivo study investigated how increased aortic arch angulation affects aortic stiffness and stent-graft induced aortic stiffening, assessed by pulse wave velocity (PWV). Methods: Porcine thoracic aortas were connected to a circulatory mock loop in a Type I and Type III aortic arch configuration. Baseline characteristics and blood pressures were measured. Proximal and distal flow curves were acquired to calculate PWV in both arch configurations. After that, a thoracic stent-graft (VAMF2626C100TU) was deployed in aortas with adequate proximal landing zone diameters to reach 10% t0 20% oversizing. Acquisitions were repeated for both arch configurations after stent-graft deployment. Results: Twenty-four aortas were harvested, surgically prepared, and mounted. Cardiac output was kept constant for both arch configurations (Type I: 4.74 ± 0.40 and Type III: 4.72 ± 0.38 L/minute; P = .703). Compared with a Type I arch, aortic PWV increased significantly in the Type III arch (3.53 ± 0.40 vs 3.83 ± 0.40 m/second; P < .001), as well as blood pressures. A stent-graft was deployed in 15 aortas. After deployment, Type I arch PWV increased (3.55 ± 0.39 vs 3.81 ± 0.44 m/second; P < .001) and Type III arch PWV increased although not significantly (3.86 ± 0.42 vs 4.03 ± 0.46 m/second; P = .094). Type III arch PWV resulted the highest and significantly higher compared with the Type I arch after stent-graft deployment (3.81 ± 0.44 vs 4.03 ± 0.46 m/second; P = .023). Conclusions: Increased aortic arch angulation—as in a Type III arch—is associated with higher aortic PWV and blood pressures and this may negatively influence cardiovascular health