82 research outputs found

    Engineering Mesoporous Silica Nanoparticles for Drug Delivery: where are we after two decades?

    Get PDF
    The present review details a chronological description of the events that took place during the development of mesoporous materials, their different synthetic routes and their use as drug delivery systems. The outstanding textural properties of these materials quickly inspired their translation to the nanoscale dimension leading to mesoporous silica nanoparticles (MSNs). The different aspects of introducing pharmaceutical agents into the pores of these nanocarriers, together with their possible biodistribution and clearance routes, would be here described. The development of smart nanocarriers able to release high local concentration of the therapeutic cargo on-demand after the application of certain stimuli would be here reviewed, together with the ability of delivering the therapeutic cargo to precise locations in the body. The huge progress in the design and development of MSNs for biomedical applications, including the potential treatment of different diseases, during the last 20 years will be here collected, together with the required work that still needs to be done to achieve the clinical translation of these materials. This review was conceived to stand out from past reports since aims to tell the story of the development of mesoporous materials and their use as drug delivery systems by some of the story makers, who could be considered to be among the pioneers in this area

    Исследование коррозионных процессов бурового оборудования в жидкостях заканчивания скважин

    Get PDF
    В процессе исследования были рассмотрены и проанализированы основные факторы, влияющие на потерю массы металлических пластин. Исследована эффективность ингибиторов в различных средах. Изучены существующие разновидности коррозии. Описаны методики проведенных экспериментов, проведена обработка полученных данных. Проанализированы и выявлены закономерности потери массы при одинаковой температуре в одной среде, но при различных концентрациях.In the course of the research, the main factors affecting the weight loss of metal plates were considered and analyzed. The effectiveness of inhibitors in various media has been investigated. Existing types of corrosion have been studied. The methods of the experiments performed are described, and the data obtained are processed. Analyzed and revealed the regularities of weight loss at the same temperature in the same medium, but at different concentrations

    Advancing critical chemical processes for a sustainable future: challenges for industry and the Max Planck-Cardiff centre on the fundamentals of heterogeneous catalysis (funcat)

    Get PDF
    Catalysis is involved in around 85 % of manufacturing industry and contributes an estimated 25 % to the global domestic product, with the majority of the processes relying on heterogeneous catalysis. Despite the importance in different global segments, the fundamental understanding of heterogeneously catalysed processes lags substantially behind that achieved in other fields. The newly established Max Planck–Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT) targets innovative concepts that could contribute to the scientific developments needed in the research field to achieve net zero greenhouse gas emissions in the chemical industries. This Viewpoint Article presents some of our research activities and visions on the current and future challenges of heterogeneous catalysis regarding green industry and the circular economy by focusing explicitly on critical processes. Namely, hydrogen production, ammonia synthesis, and carbon dioxide reduction, along with new aspects of acetylene chemistry

    Influence of Support Material on the Structural Evolution of Copper during Electrochemical CO2 Reduction

    Get PDF
    The copper-catalyzed electrochemical CO2 reduction reaction represents an elegant pathway to reduce CO2 emissions while producing a wide range of valuable hydrocarbons. The selectivity for these products depends strongly on the structure and morphology of the copper catalyst. However, continued deactivation during catalysis alters the obtained product spectrum. In this work, we report on the stabilizing effect of three different carbon supports with unique pore structures. The influence of pore structure on stability and selectivity was examined by high-angle annular dark field scanning transmission electron microscopy and gas chromatography measurements in a micro-flow cell. Supporting particles into confined space was found to increase the barrier for particle agglomeration during 20 h of chronopotentiometry measurements at 100 mA cm−2 resembling long-term CO2 reduction conditions. We propose a catalyst design preventing coalescence and agglomeration in harsh electrochemical reaction conditions, exemplarily demonstrated for the electrocatalytic CO2 reduction. With this work, we provide important insights into the design of stable CO2 electrocatalysts that can potentially be applied to a wide range of applications

    Energy Storage as Part of a Secure Energy Supply

    Get PDF
    The current energy system is subject to a fundamental transformation: A system that is oriented towards a constant energy supply by means of fossil fuels is now expected to integrate increasing amounts of renewable energy to achieve overall a more sustainable energy supply. The challenges arising from this paradigm shift are currently most obvious in the area of electric power supply. However, it affects all areas of the energy system, albeit with different results. Within the energy system, various independent grids fulfill the function of transporting and spatially distributing energy or energy carriers, and the demand-oriented supply ensures that energy demands are met at all times. However, renewable energy sources generally supply their energy independently from any specific energy demand. Their contribution to the overall energy system is expected to increase significantly. Energy storage technologies are one option for temporal matching of energy supply and demand. Energy storage systems have the ability to take up a certain amount of energy, store it in a storage medium for a suitable period of time, and release it in a controlled manner after a certain time delay. Energy storage systems can also be constructed as process chains by combining unit operations, each of which cover different aspects of these functions. Large-scale mechanical storage of electric power is currently almost exclusively achieved by pumped-storage hydroelectric power stations. These systems may be supplemented in the future by compressed-air energy storage and possibly air separation plants. In the area of electrochemical storage, various technologies are currently in various stages of research, development, and demonstration of their suitability for large-scale electrical energy storage. Thermal energy storage technologies are based on the storage of sensible heat, exploitation of phase transitions, adsorption/desorption processes, and chemical reactions. The latter offer the possibility of permanent and loss-free storage of heat. The storage of energy in chemical bonds involves compounds that can act as energy carriers or as chemical feedstocks. Thus, they are in direct economic competition with established (fossil fuel) supply routes. The key technology here – now and for the foreseeable future – is the electrolysis of water to produce hydrogen and oxygen. Hydrogen can be transformed by various processes into other energy carriers, which can be exploited in different sectors of the energy system and/or as raw materials for energy-intensive industrial processes. Some functions of energy storage systems can be taken over by industrial processes. Within the overall energy system, chemical energy storage technologies open up opportunities to link and interweave the various energy streams and sectors. Chemical energy storage not only offers means for greater integration of renewable energy outside the electric power sector, it also creates new opportunities for increased flexibility, novel synergies, and additional optimization. Several examples of specific energy utilization are discussed and evaluated with respect to energy storage applications. The article describes various technologies for energy storage and their potential applications in the context of Germany’s Energiewende, i.e. the transition towards a more sustainable energy system. Therefore, the existing legal framework defines some of the discussions and findings within the article, specifically the compensation for renewable electricity providers defined by the German Renewable Energy Sources Act, which is under constant reformation. While the article is written from a German perspective, the authors hope this article will be of general interest for anyone working in the areas of energy systems or energy technology

    Non-siliceous Mesostructured and Mesoporous Materials †

    No full text

    Making more from methane

    No full text

    Chemistry of Materials—Your Journal for High Science in 2012

    No full text

    Influence of Crystallite Size on the Properties of Zirconia

    No full text
    corecore