12 research outputs found
The potential impacts of migratory difficulty, including warmer waters and altered flow conditions, on the reproductive success of salmonid fishes
AbstractClimate change and urbanisation of watercourses affect water temperatures and current flow velocities in river systems on a global scale. This represents a particularly critical issue for migratory fish species with complex life histories that use rivers to reproduce. Salmonids are migratory keystone species that provide substantial economical value to ecosystems and human societies. Consequently, a comprehensive understanding of the effects of environmental stressors on their reproductive success is critical in order to ensure their continued abundance during future climatic change. Salmonids are capital breeders, relying entirely on endogenous energy stores to fuel return migration to their natal spawning sites and reproduction upon arrival. Metabolic rates and cost of transport en-route increase with temperature and at extreme temperatures, swimming is increasingly fuelled anaerobically, resulting in an oxygen debt and reduced capacity to recover from exhaustive exercise. Thermally challenged salmonids also produce less viable gametes, which themselves are affected by water temperature after release. Passage through hydrological barriers and temperature changes both affect energy expenditure. As a result, important energetic tradeoffs emerge between extra energy used during migration and that available for other facets of the reproductive cycle, such as reproductive competition and gamete production. However, studies identifying these tradeoffs are extremely sparse. This review focuses on the specific locomotor responses of salmonids to thermal and hydrological challenges, identifying gaps in our knowledge and highlighting the potential implications for key aspects of their reproduction
Beyond aggression: Androgen-receptor blockade modulates social interaction in wild meerkats
In male vertebrates, androgens are inextricably linked to reproduction, social dominance, and aggression, often at the cost of paternal investment or prosociality. Testosterone is invoked to explain rank-related reproductive differences, but its role within a status class, particularly among subordinates, is underappreciated. Recent evidence, especially for monogamous and cooperatively breeding species, suggests broader androgenic mediation of adult social interaction. We explored the actions of androgens in subordinate, male members of a cooperatively breeding species, the meerkat (Suricata suricatta). Although male meerkats show no rank-related testosterone differences, subordinate helpers rarely reproduce. We blocked androgen receptors, in the field, by treating subordinate males with the antiandrogen, flutamide. We monitored androgen concentrations (via baseline serum and time-sequential fecal sampling) and recorded behavior within their groups (via focal observation). Relative to controls, flutamide-treated animals initiated less and received more high-intensity aggression (biting, threatening, feeding competition), engaged in more prosocial behavior (social sniffing, grooming, huddling), and less frequently initiated play or assumed a ‘dominant’ role during play, revealing significant androgenic effects across a broad range of social behavior. By contrast, guarding or vigilance and measures of olfactory and vocal communication in subordinate males appeared unaffected by flutamide treatment. Thus, androgens in male meerkat helpers are aligned with the traditional trade-off between promoting reproductive and aggressive behavior at a cost to affiliation. Our findings, based on rare endocrine manipulation in wild mammals, show a more pervasive role for androgens in adult social behavior than is often recognized, with possible relevance for understanding tradeoffs in cooperative systems
The determinants of dominance relationships among subordinate females in the cooperatively breeding meerkat
In cooperatively breeding species with high reproductive skew, a single breeding female is dominant to all other group members, but it is not yet known if there are consistent dominance relationships among subordinates. In this study on meerkats (Suricata suricatta), we used naturally observed dominance assertions and submissive interactions within dyads of subordinate females to investigate: (i) whether or not a dominance structure exists among them and what factors influence dominance relationships; and (ii) how dominance may influence the future reproductive success of subordinate females. Our study indicates that superiority in age and weight provide a competitive advantage during conflicts among subordinate females and that females who consistently dominate in these contests are subsequently more likely to attain a dominant breeding position. This provides a starting point for further investigations into dominance structure among subordinates in meerkat societies and other cooperative breeders
2019_Fenkes-et-al_BiO_S-trutta-spermatozoa_head_drag
Raw data file d
2019_Fenkes-et-al_BiO_S-trutta-spermatozoa_morphology
Raw data file b
2019_Fenkes-et-al_BiO_S-trutta-abnormal_spermatozoa
Raw data file
Data from: Acclimation temperature changes spermatozoa flagella length relative to head size in brown trout
Temperature is a ubiquitous environmental factor affecting physiological processes of ectotherms. Due to the effects of climate change on global air and water temperatures, predicting the impacts of changes in environmental thermal conditions on ecosystems is becoming increasingly important. This is especially crucial for migratory fish, such as the ecologically and economically vital salmonids, because their complex life histories make them particularly vulnerable. Here, we addressed the question whether temperature affects the morphology of brown trout, Salmo trutta L. spermatozoa. The fertilising ability of spermatozoa is commonly attributed to their morphological dimensions, thus implying direct impacts on the reproductive success of the male producing the cells. We show that absolute lengths of spermatozoa are not affected by temperature, but spermatozoa from warm acclimated S. trutta males have longer flagella relative to their head size compared to their cold acclimated counterparts. This did not directly affect sperm swimming speed, although spermatozoa from warm acclimated males may have experienced a hydrodynamic advantage at warmer temperatures, as suggested by our calculations of drag based on head size and sperm swimming speed. The results presented here highlight the importance of increasing our knowledge of the effects of temperature on all aspects of salmonid reproduction in order to secure their continued abundance