23 research outputs found

    Genome-wide characterization of the PP2C gene family in peanut (Arachis hypogaea L.) and the identification of candidate genes involved in salinity-stress response

    Get PDF
    Plant protein phosphatase 2C (PP2C) play important roles in response to salt stress by influencing metabolic processes, hormone levels, growth factors, etc. Members of the PP2C family have been identified in many plant species. However, they are rarely reported in peanut. In this study, 178 PP2C genes were identified in peanut, which were unevenly distributed across the 20 chromosomes, with segmental duplication in 78 gene pairs. AhPP2Cs could be divided into 10 clades (A-J) by phylogenetic analysis. AhPP2Cs had experienced segmental duplications and strong purifying selection pressure. 22 miRNAs from 14 different families were identified, targeting 57 AhPP2C genes. Gene structures and motifs analysis exhibited PP2Cs in subclades AI and AII had high structural and functional similarities. Phosphorylation sites of AhPP2C45/59/134/150/35/121 were predicted in motifs 2 and 4, which located within the catalytic site at the C-terminus. We discovered multiple MYB binding factors and ABA response elements in the promoter regions of the six genes (AhPP2C45/59/134/150/35/121) by cis-elements analysis. GO and KEGG enrichment analysis confirmed AhPP2C-A genes in protein binding, signal transduction, protein modification process response to abiotic stimulus through environmental information processing. Based on RNA-Seq data of 22 peanut tissues, clade A AhPP2Cs showed a varying degree of tissue specificity, of which, AhPP2C35 and AhPP2C121 specifically expressed in seeds, while AhPP2C45/59/134/150 expressed in leaves and roots. qRT-PCR indicated that AhPP2C45 and AhPP2C134 displayed significantly up-regulated expression in response to salt stress. These results indicated that AhPP2C45 and AhPP2C134 could be candidate PP2Cs conferring salt tolerance. These results provide further insights into the peanut PP2C gene family and indicate PP2Cs potentially involved in the response to salt stress, which can now be further investigated in peanut breeding efforts to obtain cultivars with improved salt tolerance

    Complexity of Wake Electroencephalography Correlates With Slow Wave Activity After Sleep Onset

    No full text
    Sleep electroencephalography (EEG) provides an opportunity to study sleep scientifically, whose chaotic, dynamic, complex, and dissipative nature implies that non-linear approaches could uncover some mechanism of sleep. Based on well-established complexity theories, one hypothesis in sleep medicine is that lower complexity of brain waves at pre-sleep state can facilitate sleep initiation and further improve sleep quality. However, this has never been studied with solid data. In this study, EEG collected from healthy subjects was used to investigate the association between pre-sleep EEG complexity and sleep quality. Multiscale entropy analysis (MSE) was applied to pre-sleep EEG signals recorded immediately after light-off (while subjects were awake) for measuring the complexities of brain dynamics by a proposed index, CI1−30. Slow wave activity (SWA) in sleep, which is commonly used as an indicator of sleep depth or sleep intensity, was quantified based on two methods, traditional Fast Fourier transform (FFT) and ensemble empirical mode decomposition (EEMD). The associations between wake EEG complexity, sleep latency, and SWA in sleep were evaluated. Our results demonstrated that lower complexity before sleep onset is associated with decreased sleep latency, indicating a potential facilitating role of reduced pre-sleep complexity in the wake-sleep transition. In addition, the proposed EEMD-based method revealed an association between wake complexity and quantified SWA in the beginning of sleep (90 min after sleep onset). Complexity metric could thus be considered as a potential indicator for sleep interventions, and further studies are encouraged to examine the application of EEG complexity before sleep onset in populations with difficulty in sleep initiation. Further studies may also examine the mechanisms of the causal relationships between pre-sleep brain complexity and SWA, or conduct comparisons between normal and pathological conditions

    Age-Related Alterations in Electroencephalography Connectivity and Network Topology During n-Back Working Memory Task

    Get PDF
    The study of the healthy brain in elders, especially age-associated alterations in cognition, is important to understand the deficits created by Alzheimer's disease (AD), which imposes a tremendous burden on individuals, families, and society. Although, the changes in synaptic connectivity and reorganization of brain networks that accompany aging are gradually becoming understood, little is known about how normal aging affects brain inter-regional synchronization and functional networks when items are held in working memory (WM). According to the classic Sternberg WM paradigm, we recorded multichannel electroencephalography (EEG) from healthy adults (young and senior) in three different conditions, i.e., the resting state, 0-back (control) task, and 2-back task. The phase lag index (PLI) between EEG channels was computed and then weighted and undirected network was constructed based on the PLI matrix. The effects of aging on network topology were examined using a brain connectivity toolbox. The results showed that age-related alteration was more prominent when the 2-back task was engaged, especially in the theta band. For the younger adults, the WM task evoked a significant increase in the clustering coefficient of the beta-band functional connectivity network, which was absent in the older adults. Furthermore, significant correlations were observed between the behavioral performance of WM and EEG metrics in the theta and gamma bands, suggesting the potential use of those measures as biomarkers for the evaluation of cognitive training, for instance. Taken together, our findings shed further light on the underlying mechanism of WM in physiological aging and suggest that different EEG frequencies appear to have distinct functional correlates in cognitive aging. Analysis of inter-regional synchronization and topological characteristics based on graph theory is thus an appropriate way to explore natural age-related changes in the human brain

    Cell transcriptomic atlas of the non-human primate Macaca fascicularis.

    Get PDF
    Studying tissue composition and function in non-human primates (NHPs) is crucial to understand the nature of our own species. Here we present a large-scale cell transcriptomic atlas that encompasses over 1 million cells from 45 tissues of the adult NHP Macaca fascicularis. This dataset provides a vast annotated resource to study a species phylogenetically close to humans. To demonstrate the utility of the atlas, we have reconstructed the cell-cell interaction networks that drive Wnt signalling across the body, mapped the distribution of receptors and co-receptors for viruses causing human infectious diseases, and intersected our data with human genetic disease orthologues to establish potential clinical associations. Our M. fascicularis cell atlas constitutes an essential reference for future studies in humans and NHPs.We thank W. Liu and L. Xu from the Huazhen Laboratory Animal Breeding Centre for helping in the collection of monkey tissues, D. Zhu and H. Li from the Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) for technical help, G. Guo and H. Sun from Zhejiang University for providing HCL and MCA gene expression data matrices, G. Dong and C. Liu from BGI Research, and X. Zhang, P. Li and C. Qi from the Guangzhou Institutes of Biomedicine and Health for experimental advice or providing reagents. This work was supported by the Shenzhen Basic Research Project for Excellent Young Scholars (RCYX20200714114644191), Shenzhen Key Laboratory of Single-Cell Omics (ZDSYS20190902093613831), Shenzhen Bay Laboratory (SZBL2019062801012) and Guangdong Provincial Key Laboratory of Genome Read and Write (2017B030301011). In addition, L.L. was supported by the National Natural Science Foundation of China (31900466), Y. Hou was supported by the Natural Science Foundation of Guangdong Province (2018A030313379) and M.A.E. was supported by a Changbai Mountain Scholar award (419020201252), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030502), a Chinese Academy of Sciences–Japan Society for the Promotion of Science joint research project (GJHZ2093), the National Natural Science Foundation of China (92068106, U20A2015) and the Guangdong Basic and Applied Basic Research Foundation (2021B1515120075). M.L. was supported by the National Key Research and Development Program of China (2021YFC2600200).S

    Investigation on the Prediction of Cardiovascular Events Based on Multi-Scale Time Irreversibility Analysis

    No full text
    Investigation of the risk factors associated with cardiovascular disease (CVD) plays an important part in the prevention and treatment of CVD. This study investigated whether alteration in the multi-scale time irreversibility of sleeping heart rate variability (HRV) was a risk factor for cardiovascular events. The D-value, based on analysis of multi-scale increments in HRV series, was used as the measurement of time irreversibility. Eighty-four subjects from an open-access database (i.e., the Sleep Heart Health Study) were included in this study. None of them had any CVD history at baseline; 42 subjects had cardiovascular events within 1 year after baseline polysomnography and were classed as the CVD group, and the other 42 subjects in the non-CVD group were age matched with those in the CVD group and had no cardiovascular events during the 15-year follow-up period. We compared D-values of sleeping HRV between the CVD and non-CVD groups and found that the D-values of the CVD group were significantly lower than those of the non-CVD group on all 10 scales, even after adjusting for gender and body mass index. Moreover, we investigated the performance of a machine learning model to classify CVD and non-CVD subjects. The model, which was fed with a feature space based on the D-values on 10 scales and trained by a random forest algorithm, achieved an accuracy of 80.8% and a positive prediction rate of 86.7%. These results suggest that the decreased time irreversibility of sleeping HRV is an independent predictor of cardiovascular events that could be used to assist the intelligent prediction of cardiovascular events

    CT and MRI Features of Hairy Polyps in Neonates and Infants: A Retrospective Study of 14 Patients

    No full text
    Background: The typical imaging findings of hairy polyps have been described mostly in case reports. This study was conducted to describe the CT and MRI features of hairy polyps and their common associated abnormalities. Methods: Medical records of 14 patients with pathological diagnosis of hairy polyps were collected for this study. For each patient, the medical records, including demographics, clinical manifestations, and imaging findings were reviewed. Results: The female-to-male ratio was 3.7:1. The age at first episode varied from birth to 2.7 years. The masses were derived from the back side of the soft palate in seven (50.0%) cases, from the lateral pharyngeal wall in four (28.6%) cases, from the soft palate in one (7.1%) case, from the nasal vestibule in one (7.1%) case, and from the parapharyngeal space in one (7.1%) case. A total of 11 (78.6%) cases presented with pedicled masses containing fat and a central core of soft tissue, there were 3 (21.4%) cases whose imaging findings were atypical, and there were 6 (42.9%) patients who had other pathologies. Conclusions: Hairy polyps typically presented as pedicled masses containing fat and a central core of soft tissue, but sometimes their imaging findings can be atypical and they can be associated with other congenital abnormalities. CT and MRI are reliable methods for the diagnosis of hairy polyps and their associated abnormalities

    A Data Mining-Based Analysis of Medication Rules in Treating Bone Marrow Suppression by Kidney-Tonifying Method

    No full text
    Objective. To investigate the rule of kidney-tonifying method in Chinese medicine for the treatment of bone marrow suppression (BMS), in order to provide evidence and references for the clinical application of herbs and formulae. Design. Collecting and sorting the information about the treatment of BMS related to kidney-tonifying (Bushen) method in Chinese medicine literatures on databases including Chinese National Knowledge Infrastructure (CNKI), and Chinese Biomedical Literature Database (CBM), establishing a database of BMS treating formulae after radiotherapy and chemotherapy with traditional Chinese medicine (TCM) kidney-tonifying method, and finally applying the relevant theories and techniques of data mining to analyze the medication rules of it. Results. A total of 239 formulae and 202 herbs were included in this database, in which the herbs occurred 2,602 times in general. The high frequency herbs included Astragali Radix (Huangqi), Atractylodis Macrocephalae Rhizoma (Baizhu), and Ligustri Lucidi Fructus (Nvzhenzi). The main herb categories were deficiency-tonifying herbs, blood-activating herbs, dampness-draining diuretic herbs, heat-clearing herbs, and digestant herbs. Deficiency-tonifying herbs accounted for 64.60% of the total number. A total of 8 clustering formulae are summarized according to cluster analysis and 26 herb suits association rules are identified by Apriori algorithm. Conclusion. The treatment of BMS is mainly based on the method of invigorating the spleen and tonifying the kidney and liver to strengthen healthy qi, supplementing with blood-activating herbs, and dampness-draining diuretic herbs to eliminate pathogenic factors

    Characterization of high-efficiency multi-crystalline silicon in industrial production

    No full text
    A new technique for the directional solidification growth of multi-crystalline silicon (mc-Si) ingot was developed by GCL-POLY Energy Holdings Ltd. This technique is called as S2 and has been used recently for industrial production. The average conversion efficiency of the solar cells fabricated by S2 mc-Si wafers is increased by 0.62% compared with the traditional mc-Si solar cells using conventional solar cell processing. In order to understand the origin of the high cell performance, ensure the process reproducibility and further improve the technique, this paper analyzes the grain structures of the S2 mc-Si wafers by light microscopy and scanning electron microscopy supported with electron back scatter diffraction. Our analysis indicates that the increased performance of the S2 mc-Si solar cells is contributed to low dislocation density, uniform and highly oriented grains with high percentage of electrically inactive grain boundary (Σ3 grain boundary)
    corecore