26,521 research outputs found
Collective Flow Distributions and Nuclear Stopping in Heavy-ion Collisions at AGS, SPS and RHIC
We study the production of proton, antiproton and net-proton at \AGS, \SPS
and \RHIC within the framework non-uniform flow model(NUFM) in this paper. It
is found that the system of RHIC has stronger longitudinally non-uniform
feature than AGS and SPS, which means that nuclei at RHIC energy region is much
more transparent. The NUFM model provides a very good description of all proton
rapidity at whole AGS, SPS and RHIC. It is shown that our analysis relates
closely to the study of nuclear stopping and longitudinally non-uniform flow
distribution of experiment. This comparison with AGS and SPS help us to
understand the feature of particle stopping of thermal freeze-out at RHIC
experiment.Comment: 16 pages,7 figure
Robust optimization for energy transactions in multi-microgrids under uncertainty
Independent operation of single microgrids (MGs) faces problems such as low self-consumption of local renewable energy, high operation cost and frequent power exchange with the grid. Interconnecting multiple MGs as a multi-microgrid (MMG) is an effective way to improve operational and economic performance. However, ensuring the optimal collaborative operation of a MMG is a challenging problem, especially under disturbances of intermittent renewable energy. In this paper, the economic and collaborative operation of MMGs is formulated as a unit commitment problem to describe the discrete characteristics of energy transaction combinations among MGs. A two-stage adaptive robust optimization based collaborative operation approach for a residential MMG is constructed to derive the scheduling scheme which minimizes the MMG operating cost under the worst realization of uncertain PV output. Transformed by its KKT optimality conditions, the reformulated model is efficiently solved by a column-and-constraint generation (C&CG) method. Case studies verify the effectiveness of the proposed model and evaluate the benefits of energy transactions in MMGs. The results show that the developed MMG operation approach is able to minimize the daily MMG operating cost while mitigating the disturbances of uncertainty in renewable energy sources. Compared to the non-interactive model, the proposed model can not only reduce the MMG operating cost but also mitigate the frequent energy interaction between the MMG and the grid
Morphological evolution of a 3D CME cloud reconstructed from three viewpoints
The propagation properties of coronal mass ejections (CMEs) are crucial to
predict its geomagnetic effect. A newly developed three dimensional (3D) mask
fitting reconstruction method using coronagraph images from three viewpoints
has been described and applied to the CME ejected on August 7, 2010. The CME's
3D localisation, real shape and morphological evolution are presented. Due to
its interaction with the ambient solar wind, the morphology of this CME changed
significantly in the early phase of evolution. Two hours after its initiation,
it was expanding almost self-similarly. CME's 3D localisation is quite helpful
to link remote sensing observations to in situ measurements. The investigated
CME was propagating to Venus with its flank just touching STEREO B. Its
corresponding ICME in the interplanetary space shows a possible signature of a
magnetic cloud with a preceding shock in VEX observations, while from STEREO B
only a shock is observed. We have calculated three principle axes for the
reconstructed 3D CME cloud. The orientation of the major axis is in general
consistent with the orientation of a filament (polarity inversion line)
observed by SDO/AIA and SDO/HMI. The flux rope axis derived by the MVA analysis
from VEX indicates a radial-directed axis orientation. It might be that locally
only the leg of the flux rope passed through VEX. The height and speed profiles
from the Sun to Venus are obtained. We find that the CME speed possibly had
been adjusted to the speed of the ambient solar wind flow after leaving COR2
field of view and before arriving Venus. A southward deflection of the CME from
the source region is found from the trajectory of the CME geometric center. We
attribute it to the influence of the coronal hole where the fast solar wind
emanated from.Comment: ApJ, accepte
Existence problem of proton semi-bubble structure in the state of Si
The fully self-consistent Hartree-Fock (HF) plus random phase approximation
(RPA) based on Skyrme-type interaction is used to study the existence problem
of proton semi-bubble structure in the state of Si. The
experimental excitation energy and the B(E2) strength of the state in
Si can be reproduced quite well. The tensor effect is also studied. It
is shown that the tensor interaction has a notable impact on the excitation
energy of the state and a small effect on the B(E2) value. Besides, its
effect on the density distributions in the ground and state of
Si is negligible. Our present results with T36 and T44 show that the
state of Si is mainly caused by proton transiton from orbit to orbit, and the existence of a proton
semi-bubble structure in this state is very unlikely.Comment: 6 pages, 3 figures, 3 table
Anisotropic but nodeless superconducting gap in the presence of spin density wave in iron-pnictide superconductor NaFe1-xCoxAs
The coexisting regime of spin density wave (SDW) and superconductivity in the
iron pnictides represents a novel ground state. We have performed high
resolution angle-resolved photoemission measurements on NaFe1-xCoxAs (x =
0.0175) in this regime and revealed its distinctive electronic structure, which
provides some microscopic understandings of its behavior. The SDW signature and
the superconducting gap are observed on the same bands, illustrating the
intrinsic nature of the coexistence. However, because the SDW and
superconductivity are manifested in different parts of the band structure,
their competition is non-exclusive. Particularly, we found that the gap
distribution is anisotropic and nodeless, in contrast to the isotropic
superconducting gap observed in an SDW-free NaFe1-xCoxAs (x=0.045), which puts
strong constraints on theory.Comment: 5 pages, 4 figures + supplementary informatio
- …