101,858 research outputs found
Analytical modeling of flash-back phenomena
To understand the flame flash-back phenomena more extensively, an analytical model was formed and a numerical program was written and tested to solve the set of differential equations describing the model. Results show that under a given set of conditions flame propagates in the boundary layer on a flat plate when the free stream is at or below 1.8 m/s
A study of the use of vibration and stress wave sensing for the detection of bearing failure
Results from an experimental study of vibrations and stress waves emitted from ball bearings are presented. Fatique tests were run with both high quality bearings and man faulted bearings, all of one size. Tests were instrumented with different sensors to detect the noises from 10 Hz to 1 MHz. Frequency spectrum plots are presented. The modulation characteristics of the ultrasonic noises were analyzed, and acoustic emission type measurements were conducted. Results are presented which show that there are usable acoustic signal levels even beyond 500 KHz. These signal levels are modulated by a low frequency carrier which is a function of the stress loading and acoustic transmissibility. The results were correlated to fault size in the bearings. The correlation shows that the sensor used for signals from 100 KHz to 1 MHz gave the best sensitivity and detected the generation of very small spalls or pits
Deficient Reasoning for Dark Matter in Galaxies
Astronomers have been using the measured luminosity to estimate the {\em
luminous mass} of stars, based on empirically established mass-to-light ratio
which seems to be only applicable to a special class of stars---the
main-sequence stars---with still considerable uncertainties. Another basic tool
to determine the mass of a system of stars or galaxies comes from the study of
their motion, as Newton demonstrated with his law of gravitation, which yields
the {\em gravitational mass}. Because the luminous mass can at best only
represent a portion of the gravitational mass, finding the luminous mass to be
different or less than the gravitational mass should not be surprising. Using
such an apparent discrepancy as a compelling evidence for the so-called dark
matter, which has been believed to possess mysterious nonbaryonic properties
and present a dominant amount in galaxies and the universe, seems to be too far
a stretch when seriously examining the facts and uncertainties in the
measurement techniques. In our opinion, a galaxy with star type distribution
varying from its center to edge may have a mass-to-light ratio varying
accordingly. With the thin-disk model computations based on measured rotation
curves, we found that most galaxies have a typical mass density profile that
peaks at the galactic center and decreases rapidly within of the
cut-off radius, and then declines nearly exponentially toward the edge. The
predicted mass density in the Galactic disk is reasonably within the reported
range of that observed in interstellar medium. This leads us to believe that
ordinary baryonic matter can be sufficient for supporting the observed galactic
rotation curves; speculation of large amount of non-baryonic matter may be
based on an ill-conceived discrepancy between gravitational mass and luminous
mass which appears to be unjustified
The spin-polarized state of graphene: a spin superconductor
We study the spin-polarized Landau-level state of graphene. Due to
the electron-hole attractive interaction, electrons and holes can bound into
pairs. These pairs can then condense into a spin-triplet superfluid ground
state: a spin superconductor state. In this state, a gap opens up in the edge
bands as well as in the bulk bands, thus it is a charge insulator, but it can
carry the spin current without dissipation. These results can well explain the
insulating behavior of the spin-polarized state in the recent
experiments.Comment: 6 pages, 4 figure
- …
