3,308 research outputs found
Potential Benefits of Remote Working on Urban Mobility and Related Environmental Impacts: Results from a Case Study in Italy
Remote working is increasingly seen as an effective model in several countries in the last decade, mainly thanks to the development of information and communication technologies in support of common daily working tasks. The emergence of the COVID-19 pandemic has represented a pivotal moment for the adoption of remote working in multiple sectors, with positive effects on the environmental impacts caused by the daily commuting of workers. However, due to the fact that pandemic-induced remote working has represented a major forced experiment on a global scale, and that it has often been imposed rather than chosen by employees, workers’ well-being has not always been ensured. This research work presents an analysis of a wide survey of remote workers in public administrations in four different provinces in Italy, with the aim of assessing the main characteristics of the users and the related environmental benefits. Survey data refer to remote workers before COVID-19, thus representing workers who have freely chosen to work from home for different reasons. The results of this work represent a useful tool with which to support the definition of new remote work strategies that could help policy makers reduce a part of the systematic mobility demand. We have also calculated average energy and emission savings to provide useful indicators for a preliminary estimation of the potential environmental benefits of remote working. Considering the entire sample of respondents, workers who would have commuted at least partially by car have saved on average 6 kg of CO2 per day thanks to remote working (with an average round-trip commuting distance of approximately 35 km). The current results will be supplemented by the results of a new survey underway, aimed at evaluating the differences of remote working experiences during the emergency response to COVID-19
A Nexafs Study of Nitric Oxide Layers Adsorbed from a nitrite Solution onto a Pt(111) Surface
NO molecules adsorbed on a Pt(111) surface from dipping in an acidic nitrite
solution are studied by near edge X-ray absorption fine structure spectroscopy
(NEXAFS), X-ray photoelectron spectroscopy (XPS), low energy electron
diffraction (LEED) and scanning tunnelling microscopy (STM) techniques. LEED
patterns and STM images show that no long range ordered structures are formed
after NO adsorption on a Pt(111) surface. Although the total NO coverage is
very low, spectroscopic features in N K-edge and O K-edge absorption spectra
have been singled out and related to the different species induced by this
preparation method. From these measurements it is concluded that the NO
molecule is adsorbed trough the N atom in an upright conformation. The maximum
saturation coverage is about 0.3 monolayers, and although nitric oxide is the
major component, nitrite and nitrogen species are slightly co-adsorbed on the
surface. The results obtained from this study are compared with those
previously reported in the literature for NO adsorbed on Pt(111) under UHV
conditions
A perturbative approach to the Bak-Sneppen Model
We study the Bak-Sneppen model in the probabilistic framework of the Run Time
Statistics (RTS). This model has attracted a large interest for its simplicity
being a prototype for the whole class of models showing Self-Organized
Criticality. The dynamics is characterized by a self-organization of almost all
the species fitnesses above a non-trivial threshold value, and by a lack of
spatial and temporal characteristic scales. This results in {\em avalanches} of
activity power law distributed. In this letter we use the RTS approach to
compute the value of , the value of the avalanche exponent and the
asymptotic distribution of minimal fitnesses.Comment: 4 pages, 3 figures, to be published on Physical Review Letter
In-depth description of Electrohydrodynamic conduction pumping of dielectric liquids: physical model and regime analysis
In this work, we discuss the fundamental aspects of Electrohydrodynamic (EHD) conduction pumping of dielectric liquids. We build a mathematical model of conduction pumping that can be applied to all sizes, down to microsized pumps. In order to do this, we discuss the relevance of the Electrical Double Layer (EDL) that appears naturally on nonmetallic substrates. In the process, we identify a new dimensionless parameter related to the value of the zeta potential of the substrate-liquid pair, which quantifies the influence of these EDLs on the performance of the pump. This parameter also describes the transition from EHD conduction pumping to electro-osmosis. We also discuss in detail the two limiting working regimes in EHD conduction pumping: ohmic and saturation. We introduce a new dimensionless parameter, accounting for the electric field enhanced dissociation that, along with the conduction number, allows us to identify in which regime the pump operates.Ministerio de Ciencia, Innovación y Universidades PGC2018-099217-B-I0
The OPERA magnetic spectrometer
The OPERA neutrino oscillation experiment foresees the construction of two
magnetized iron spectrometers located after the lead-nuclear emulsion targets.
The magnet is made up of two vertical walls of rectangular cross section
connected by return yokes. The particle trajectories are measured by high
precision drift tubes located before and after the arms of the magnet.
Moreover, the magnet steel is instrumented with Resistive Plate Chambers that
ease pattern recognition and allow a calorimetric measurement of the hadronic
showers. In this paper we review the construction of the spectrometers. In
particular, we describe the results obtained from the magnet and RPC prototypes
and the installation of the final apparatus at the Gran Sasso laboratories. We
discuss the mechanical and magnetic properties of the steel and the techniques
employed to calibrate the field in the bulk of the magnet. Moreover, results of
the tests and issues concerning the mass production of the Resistive Plate
Chambers are reported. Finally, the expected physics performance of the
detector is described; estimates rely on numerical simulations and the outcome
of the tests described above.Comment: 6 pages, 10 figures, presented at the 2003 IEEE-NSS conference,
Portland, OR, USA, October 20-24, 200
Optical devices provide unprecedented insights into the laser cleaning of calcium oxalate layers
Abstract Calcium oxalates are insoluble colorless or whitish salts constituting noble patina, on both natural and artificial stone artworks' surfaces, the presence of which is extremely valued. The oxalates are not considered detrimental to the substrate, however, being often accompanied by other substances such as gypsum, silicates, and pigmented particles. They may form very adherent, relatively thick and colored layers creating disfiguring effects and hindering legibility of the pictorial surface. For this reason it may be appropriate to diminish their thickness, but patina's partial preservation is particularly required calling for extremely gradual and controllable cleaning approach. Thinning of calcium oxalate patina from a detached 16th century fresco (from Sansepolcro) was performed through the use of laser (Nd:YAG and Er:YAG) systems and chemical means (Carbogel loaded 5 wt.% of tetrasodium EDTA). Optical coherence tomography (OCT), providing a non-invasive stratigraphic cross-section of the examined surface, allowed to distinguish the oxalate from the underlying original layers and therefore to have an overview about its distribution, to numerically evaluate patina's thickness range and to provide the information on the amount of the material both removed and left on the artwork's surface. Laser scanning conoscopic microprofilometry allowed for a high-density sampling of the artwork's surface providing a three-dimensional model of the surface pattern. The obtained 3D models were used to estimate the amount of material removed and to compare them with those provided by OCT. The successful exploitation of the proposed exceptional cleaning monitoring methodology may be seen as an innovative and valid support for the restorers in the conservation of mural painting or other surfaces covered by oxalate layers and may pilot more targeted, cautious and respectful cleaning intervention
Poly(ADP-ribosyl)ation Acts in the DNA Demethylation of Mouse Primordial Germ Cells Also with DNA Damage-Independent Roles
Poly(ADP-ribosyl)ation regulates chromatin structure and transcription driving epigenetic events. In particular, Parp1 is able to directly influence DNA methylation patterns controlling transcription and activity of Dnmt1. Here, we show that ADP-ribose polymer levels and Parp1 expression are noticeably high in mouse primordial germ cells (PGCs) when the bulk of DNA demethylation occurs during germline epigenetic reprogramming in the embryo. Notably, Parp1 activity is stimulated in PGCs even before its participation in the DNA damage response associated with active DNA demethylation. We demonstrate that PARP inhibition impairs both genome-wide and locus-specific DNA methylation erasure in PGCs. Moreover, we evidence that impairment of PARP activity causes a significant reduction of expression of the gene coding for Tet1 hydroxylases involved in active DNA demethylation. Taken together these results demonstrate new and adjuvant roles of poly(ADP-ribosyl)ation during germline DNA demethylation and suggest its possible more general involvement in genome reprogramming
High-resolution tracking in a GEM-Emulsion detector
SHiP (Search for Hidden Particles) is a beam dump experiment proposed at the
CERN SPS aiming at the observation of long lived particles very weakly coupled
with ordinary matter mostly produced in the decay of charmed hadrons. The beam
dump facility of SHiP is also a copious factory of neutrinos of all three kinds
and therefore a dedicated neutrino detector is foreseen in the SHiP apparatus.
The neutrino detector exploits the Emulsion Cloud Chamber technique with a
modular structure, alternating walls of target units and planes of electronic
detectors providing the time stamp to the event. GEM detectors are one of the
possible choices for this task. This paper reports the results of the first
exposure to a muon beam at CERN of a new hybrid chamber, obtained by coupling a
GEM chamber and an emulsion detector. Thanks to the micrometric accuracy of the
emulsion detector, the position resolution of the GEM chamber as a function of
the particle inclination was evaluated in two configurations, with and without
the magnetic fiel
- …