212 research outputs found

    Low-frequency characterization of quantum tunneling in flux qubits

    Full text link
    We propose to investigate flux qubits by the impedance measurement technique (IMT), currently used to determine the current--phase relation in Josephson junctions. We analyze in detail the case of a high-quality tank circuit coupled to a persistent-current qubit, to which IMT was successfully applied in the classical regime. It is shown that low-frequency IMT can give considerable information about the level anticrossing, in particular the value of the tunneling amplitude. An interesting difference exists between applying the ac bias directly to the tank and indirectly via the qubit. In the latter case, a convenient way to find the degeneracy point in situ is described. Our design only involves existing technology, and its noise tolerance is quantitatively estimated to be realistic.Comment: 6 pages, 11 figures, to appear in Phys.Rev.

    Kinetic theory for nongeodesic particle motion: Selfinteracting equilibrium states and effective viscous fluid pressures

    Get PDF
    The particles of a classical relativistic gas are supposed to move under the influence of a quasilinear (in the particle four-momenta), self-interacting force inbetween elastic, binary collisions. This force which is completely fixed by the equilibrium conditions of the gas, gives rise to an effective viscous pressure on the fluid phenomenological level. Earlier results concerning the possibility of accelerated expansion of the universe due to cosmological particle production are reinterpreted. A phenomenon such as power law inflation may be traced back to specific self-interacting forces keeping the particles of a gas universe in states of generalized equilibrium.Comment: 16 pages, latex, uses ioplppt.sty. To appear in Class. Quantum Gra

    Quantum effects, soft singularities and the fate of the universe in a braneworld cosmology

    Full text link
    We examine a class of braneworld models in which the expanding universe encounters a "quiescent" future singularity. At a quiescent singularity, the energy density and pressure of the cosmic fluid as well as the Hubble parameter remain finite while all derivatives of the Hubble parameter diverge (i.e., H˙{\dot H}, H¨{\ddot H}, etc. \to \infty). Since the Kretschmann invariant diverges (RiklmRiklmR_{iklm}R^{iklm} \to \infty) at the singularity, one expects quantum effects to play an important role as the quiescent singularity is approached. We explore the effects of vacuum polarization due to massless conformally coupled fields near the singularity and show that these can either cause the universe to recollapse or, else, lead to a softer singularity at which HH, H˙{\dot H}, and H¨{\ddot H} remain finite while {\dddot H} and higher derivatives of the Hubble parameter diverge. An important aspect of the quiescent singularity is that it is encountered in regions of low density, which has obvious implications for a universe consisting of a cosmic web of high and low density regions -- superclusters and voids. In addition to vacuum polarization, the effects of quantum particle production of non-conformal fields are also likely to be important. A preliminary examination shows that intense particle production can lead to an accelerating universe whose Hubble parameter shows oscillations about a constant value.Comment: 19 pages, 3 figures, text slightly improved and references added. Accepted for publication in Classical and Quantum Gravit

    The IR-Completion of Gravity: What happens at Hubble Scales?

    Full text link
    We have recently proposed an "Ultra-Strong" version of the Equivalence Principle (EP) that is not satisfied by standard semiclassical gravity. In the theory that we are conjecturing, the vacuum expectation value of the (bare) energy momentum tensor is exactly the same as in flat space: quartically divergent with the cut-off and with no spacetime dependent (subleading) ter ms. The presence of such terms seems in fact related to some known difficulties, such as the black hole information loss and the cosmological constant problem. Since the terms that we want to get rid of are subleading in the high-momentum expansion, we attempt to explore the conjectured theory by "IR-completing" GR. We consider a scalar field in a flat FRW Universe and isolate the first IR-correction to its Fourier modes operators that kills the quadratic (next to leading) time dependent divergence of the stress energy tensor VEV. Analogously to other modifications of field operators that have been proposed in the literature (typically in the UV), the present approach seems to suggest a breakdown (here, in the IR, at large distances) of the metric manifold description. We show that corrections to GR are in fact very tiny, become effective at distances comparable to the inverse curvature and do not contain any adjustable parameter. Finally, we derive some cosmological implications. By studying the consistency of the canonical commutation relations, we infer a correction to the distance between two comoving observers, which grows as the scale factor only when small compared to the Hubble length, but gets relevant corrections otherwise. The corrections to cosmological distance measures are also calculable and, for a spatially flat matter dominated Universe, go in the direction of an effective positive acceleration.Comment: 27 pages, 2 figures. Final version, references adde

    Experimental search for radiative decays of the pentaquark baryon \Theta^+(1540)

    Full text link
    The data on the reactions K^+Xe --> K^0 \gamma X and K^+Xe --> K^+ \gamma X, obtained with the bubble chamber DIANA, have been analyzed for possible radiative decays of the \Theta^+(1540) baryon: \Theta^+ --> K^0 p \gamma and \Theta^+ --> K^+ n \gamma. No signals have been observed, and we derive the upper limits \Gamma(\Theta^+ --> K^0 p \gamma) / \Gamma(\Theta^+ --> K^0 p) < 0.032 and \Gamma(\Theta^+ --> K^+ n \gamma) / \Gamma(\Theta^+ --> K^+ n) < 0.041 which, using our previous measurement of \Gamma(\Theta^+ --> KN) = (0.39+-0.10) MeV, translate to \Gamma(\Theta^+ --> K^0 p \gamma) < 8 keV and \Gamma(\Theta^+ --> K^+ n \gamma) < 11 keV at 90% confidence level. We have also measured the cross sections of K^+ -induced reactions involving emission of a neutral pion: \sigma(K^+n --> K^0 p \pi^0) = (68+-18) \mub and \sigma(K^+N --> K^+ N \pi^0) = (30+-8) \mub for incident K^+ momentum of 640 MeV.Comment: 8 page

    Photofission of heavy nuclei at energies up to 4 GeV

    Full text link
    Total photofission cross sections for 238U, 235U, 233U, 237Np, 232Th, and natPb have been measured simultaneously, using tagged photons in the energy range Egamma=0.17-3.84 GeV. This was the first experiment performed using the Photon Tagging Facility in Hall B at Jefferson Lab. Our results show that the photofission cross section for 238U relative to that for 237Np is about 80%, implying the presence of important processes that compete with fission. We also observe that the relative photofission cross sections do not depend strongly on the incident photon energy over this entire energy range. If we assume that for 237Np the photofission probability is equal to unity, we observe a significant shadowing effect starting below 1.5 GeV.Comment: 4 pages of RevTex, 6 postscript figures, Submitted to Phys. Rev. Let

    Next stage of search for 2K(2ν\nu)-capture of 78^{78}Kr

    Full text link
    A technique to search for 2K-capture of 78^{78}Kr with large low-background proportional counter filled with an enriched in 78^{78}Kr up to 99.8% sample of Krypton at a pressure of 4.51 is described in this paper. The results of first measurements are presented. Analysis of data collected during 159 hours yielded new limit to the half-life of 78^{78}Kr with regard to 2K-capture (T1/261021_{1/2}\geq6\cdot10^{21} yr (90% C.L.)). Sensitivity of the facility to the process for one year of measurement was evaluated to be S=1.01022\texttt{S}=1.0\cdot10^{22} yr (90% C.L.).Comment: 4 pages, 5 figures; talk at the NANP'05 Conference; submitted to Phys. At. Nuc

    Nuclear Anapole Moments

    Get PDF
    Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent SPS-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ``reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments.Comment: 53 pages; 10 figures; revtex; submitted to Phys Rev

    Quantum Brownian Motion in a Bath of Parametric Oscillators: A model for system-field interactions

    Full text link
    The quantum Brownian motion paradigm provides a unified framework where one can see the interconnection of some basic quantum statistical processes like decoherence, dissipation, particle creation, noise and fluctuation. We treat the case where the Brownian particle is coupled linearly to a bath of time dependent quadratic oscillators. While the bath mimics a scalar field, the motion of the Brownian particle modeled by a single oscillator could be used to depict the behavior of a particle detector, a quantum field mode or the scale factor of the universe. An important result of this paper is the derivation of the influence functional encompassing the noise and dissipation kernels in terms of the Bogolubov coefficients. This method enables one to trace the source of statistical processes like decoherence and dissipation to vacuum fluctuations and particle creation, and in turn impart a statistical mechanical interpretation of quantum field processes. With this result we discuss the statistical mechanical origin of quantum noise and thermal radiance from black holes and from uniformly- accelerated observers in Minkowski space as well as from the de Sitter universe discovered by Hawking, Unruh and Gibbons-Hawking. We also derive the exact evolution operator and master equation for the reduced density matrix of the system interacting with a parametric oscillator bath in an initial squeezed thermal state. These results are useful for decoherence and backreaction studies for systems and processes of interest in semiclassical cosmology and gravity. Our model and results are also expected to be useful for related problems in quantum optics. %\pacs {05.40.+j,03.65.Sq,98.80.Cq,97.60.Lf}Comment: 42 pages, Latex, umdpp93-210 (submitted to Physical Review D, 3 December 1993
    corecore