431 research outputs found

    Testing the Unitarity of the CKM Matrix with a Space-Based Neutron Decay Experiment

    Full text link
    If the Standard Model is correct, and fundamental fermions exist only in the three generations, then the CKM matrix should be unitary. However, there remains a question over a deviation from unitarity from the value of the neutron lifetime. We discuss a simple space-based experiment that, at an orbit height of 500 km above Earth, would measure the kinetic-energy, solid-angle, flux spectrum of gravitationally bound neutrons (kinetic energy K<0.606 eV at this altitude). The difference between the energy spectrum of neutrons that come up from the Earth's atmosphere and that of the undecayed neutrons that return back down to the Earth would yield a measurement of the neutron lifetime. This measurement would be free of the systematics of laboratory experiments. A package of mass <25<25 kg could provide a 10^{-3} precision in two years.Comment: 10 pages, 4 figures. Revised and updated for publicatio

    A Comparative Study of the ReCell® Device and Autologous Spit-Thickness Meshed Skin Graft in the Treatment of Acute Burn Injuries.

    Get PDF
    Early excision and autografting are standard care for deeper burns. However, donor sites are a source of significant morbidity. To address this, the ReCell® Autologous Cell Harvesting Device (ReCell) was designed for use at the point-of-care to prepare a noncultured, autologous skin cell suspension (ASCS) capable of epidermal regeneration using minimal donor skin. A prospective study was conducted to evaluate the clinical performance of ReCell vs meshed split-thickness skin grafts (STSG, Control) for the treatment of deep partial-thickness burns. Effectiveness measures were assessed to 1 year for both ASCS and Control treatment sites and donor sites, including the incidence of healing, scarring, and pain. At 4 weeks, 98% of the ASCS-treated sites were healed compared with 100% of the Controls. Pain and assessments of scarring at the treatment sites were reported to be similar between groups. Significant differences were observed between ReCell and Control donor sites. The mean ReCell donor area was approximately 40 times smaller than that of the Control (P &lt; .0001), and after 1 week, significantly more ReCell donor sites were healed than Controls (P = .04). Over the first 16 weeks, patients reported significantly less pain at the ReCell donor sites compared with Controls (P ≤ .05 at each time point). Long-term patients reported higher satisfaction with ReCell donor site outcomes compared with the Controls. This study provides evidence that the treatment of deep partial-thickness burns with ASCS results in comparable healing, with significantly reduced donor site size and pain and improved appearance relative to STSG

    Chemical Mapping of Vesta and Ceres

    Get PDF
    Following successful science operations at Vesta, the Dawn spacecraft is headed for an encounter with Ceres in 2015. What have we learned at Vesta? And, what do we expect to learn by comparing Vesta and Ceres? We will address these questions from the standpoint of geochemistry. Dawn's Gamma Ray and Neutron Detector (GRaND) is sensitive to the elemental composition of surface materials to depths of a few decimeters [1]. Gamma rays and neutrons, produced by the steady bombardment of galactic cosmic rays and by the decay of naturally ]occurring radioisotopes (K, Th, U), provide a chemical fingerprint of the regolith. Analysis of planetary radiation emissions enables mapping of specific elements (such as Fe, Mg, Si, Cl, and H) and compositional parameters (such as average atomic mass), which provide information about processes that shaped the planet1s surface and interior. Dawn has exceeded operational goals for GRaND at Vesta, accumulating an abundance of nadir-pointed data during five months in a 210 km, low altitude mapping orbit around Vesta (265-km mean radius). Chemical information from gamma ray and neutron measurements was used to test the connection between Vesta and the howardite, eucrite, and diogenite (HED) meteorites [2]. Additionally, GRaND searched for evolved, igneous lithologies [3], mantle and upper crustal materials exposed in large impact basins, mesosiderite compositions, and hydrogen in Vesta1s bulk regolith. Results of our analyses and their implications for thermal evolution and regolith-processes will be presented. The possibility of a subcrustal ocean [4, 5] and lack of cerean meteorites makes water-rich Ceres a compelling target of exploration [6]. If Ceres underwent aqueous differentiation, then crustal overturn or gas driven volcanism may have significantly modified its primitive surface; and products of aqueous alteration (e.g. [7]) would detectable by GRaND [1]. For example, the presence of Cl in salts, associated with liquid-water-processes, would have a profound effect on the thermal neutron leakage flux. GRaND is sensitive to H and H-layering, which may be in the form of endogenic water ice or hydrous minerals on Ceres. Ammonia ice (e.g., from recent cryovolcanism) would produce a distinctly different neutron signature than water ice [1]. Prospective results for GRaND at Ceres will be presented in the context of what we have learned about Vesta
    • …
    corecore